×

zbMATH — the first resource for mathematics

Non-Archimedean probability. (English) Zbl 1411.60007
Summary: We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by a different type of infinite additivity.

MSC:
60A05 Axioms; other general questions in probability
03H05 Nonstandard models in mathematics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bartha P., Hitchcock C.: The shooting-room paradox and conditionalizing on measurably challenged sets. Synthese 118, 403–437 (1999) · Zbl 0947.91017
[2] V. Benci, I numeri e gli insiemi etichettati, Conferenze del seminario di matematica dell’ Universita’ di Bari, vol. 261, Laterza, Bari, Italy, 1995, p. 29.
[3] V. Benci and M. Di Nasso, Alpha-theory: an elementary axiomatic for nonstandard analysis, Expositiones Mathematicae 21 (2003), 355–386. · Zbl 1038.26019
[4] Benci V.: Numerosities of labelled sets: a new way of counting. Advances in Mathematics 173, 50–67 (2003) · Zbl 1028.03042
[5] Benci V., Di Nasso M., Forti M.: An Aristotelian notion of size. Annals of Pure and Applied Logic 143, 43–53 (2006) · Zbl 1114.03055
[6] V. Benci, The eightfold path to nonstandard analysis, Nonstandard Methods and Applications in Mathematics (N. J. Cutland, M. Di Nasso, and D. A. Ross, eds.), Lecture Notes in Logic, vol. 25, Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006, pp. 3–44. · Zbl 1104.03061
[7] V. Benci, L. Horsten, and S. Wenmackers, Infinitesimal probabilities, In preparation, 2012. · Zbl 1400.03006
[8] E. Bottazzi, {\(\omega\)}-Theory: Mathematics with Infinite and Infinitesimal Numbers, Master thesis, University of Pavia, Italy, 2012.
[9] Cutland N.: Nonstandard measure theory and its applications. Bulletin of the London Mathematical Society 15, 529–589 (1983) · Zbl 0529.28009
[10] B. de Finetti, Theory of probability, Wiley, London, UK, 1974, Translated by: A. Machí and A. Smith. · Zbl 0328.60002
[11] T. Gilbert and N. Rouche, Y a-t-il vraiment autant de nombres pairs que de naturels?, Méthodes et Analyse Non Standard (A. Pétry, ed.), Cahiers du Centre de Logique, vol. 9, Bruylant-Academia, Louvain-la-Neuve, Belgium, 1996, pp. 99–139. · Zbl 0860.03046
[12] Hájek A.: What conditional probability could not be. Synthese 137, 273–323 (2003) · Zbl 1047.03003
[13] J.B. Kadane, M.J. Schervish, and T. Seidenfeld, Statistical implications of finitely additive probability, Bayesian Inference and Decision Techniques (P.K. Goel and A. Zellnder, eds.), Elsevier, Amsterdam, The Netherlands, 1986. · Zbl 0619.62007
[14] H.J. Keisler, Foundations of infinitesimal calculus, University of Wisconsin, Madison, WI, 2011. · Zbl 0333.26001
[15] H.J. Keisler and S. Fajardo, Model theory of stochastic processes, Lecture Notes in Logic, Association for Symbolic Logic, 2002. · Zbl 1020.60020
[16] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse der Mathematik, 1933, Translated by N. Morrison, Foundations of probability. Chelsea Publishing Company, 1956 (2nd ed.).
[17] Levi I.: Coherence, regularity and conditional probability. Theory and Decision 9, 1–15 (1978) · Zbl 0376.90010
[18] D. K. Lewis, A subjectivist’s guide to objective chance, Studies in Inductive Logic and Probability (R. C. Jeffrey, ed.), University of California Press, Berkeley, CA, 1980, pp. 263–293.
[19] P.A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Transactions of the American Mathematical Society 211 (1975), 113–122. · Zbl 0312.28004
[20] E. Nelson, Radically elementary probability theory, Princeton University Press, Princeton, NJ, 1987. · Zbl 0651.60001
[21] B. Skyrms, Causal necessity, Yale University Press, New Haven, CT, 1980.
[22] R. Weintraub, How probable is an infinite sequence of heads? A reply to Williamson, Analysis 68 (2008), 247–250.
[23] S. Wenmackers and L. Horsten, Fair infinite lotteries, Accepted in Synthese, DOI: 10.1007/s11229-010-9836-x, 2010.
[24] Williamson T.: How probable is an infinite sequence of heads?. Analysis 67, 173–180 (2007) · Zbl 1158.60304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.