×

Collective risk models with dependence. (English) Zbl 1410.91261

Summary: In actuarial science, collective risk models, in which the aggregate claim amount of a portfolio is defined in terms of random sums, play a crucial role. In these models, it is common to assume that the number of claims and their amounts are independent, even if this might not always be the case. We consider collective risk models with different dependence structures. Due to the importance of such risk models in an actuarial setting, we first investigate a collective risk model with dependence involving the family of multivariate mixed Erlang distributions. Other models based on mixtures involving bivariate and multivariate copulas in a more general setting are then presented. These different structures allow to link the number of claims to each claim amount, and to quantify the aggregate claim loss. Then, we use Archimedean and hierarchical Archimedean copulas in collective risk models, to model the dependence between the claim number random variable and the claim amount random variables involved in the random sum. Such dependence structures allow us to derive a computational methodology for the assessment of the aggregate claim amount. While being very flexible, this methodology is easy to implement, and can easily fit more complicated hierarchical structures.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H05 Characterization and structure theory for multivariate probability distributions; copulas

Software:

QRM; CopulaModel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abate, J.; Whitt, W., The Fourier-series method for inverting transforms of probability distributions, Queueing Syst., 10, 1-2, 5-87 (1992) · Zbl 0749.60013
[2] Albrecher, H.; Boxma, O. J.; Ivanovs, J., On simple ruin expressions in dependent sparre Andersen risk models, J. Appl. Probab., 51, 1, 293-296 (2014) · Zbl 1286.91063
[3] Bargès, M.; Cossette, H.; Marceau, E., Tvar-based capital allocation with copulas, Insurance Math. Econom., 45, 3, 348-361 (2009) · Zbl 1231.91141
[4] Bäuerle, N.; Müller, A., Stochastic orders and risk measures: Consistency and bounds, Insurance Math. Econom., 38, 1, 132-148 (2006) · Zbl 1105.60017
[5] Boudreault, M.; Cossette, H.; Landriault, D.; Marceau, E., On a risk model with dependence between interclaim arrivals and claim sizes, Scand. Actuar. J., 2006, 5, 265-285 (2006) · Zbl 1145.91030
[6] Cossette, H.; Gadoury, S.-P.; Marceau, É.; Mtalai, I., Hierarchical Archimedean copulas through multivariate compound distributions, Insurance Math. Econom., 76, 1-13 (2017) · Zbl 1395.62112
[7] Cossette, H.; Marceau, E.; Marri, F., On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula, Insurance Math. Econom., 43, 3, 444-455 (2008) · Zbl 1151.91565
[8] Cossette, H.; Marceau, E.; Mtalai, I.; Veilleux, D., Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications, Insurance Math. Econom., 78, 53-71 (2018) · Zbl 1398.62289
[9] Cossette, H.; Marceau, E.; Perreault, S., On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation, Insurance Math. Econom., 64, 214-224 (2015) · Zbl 1348.91137
[10] Czado, C.; Kastenmeier, R.; Brechmann, E. C.; Min, A., A mixed copula model for insurance claims and claim sizes, Scand. Actuar. J., 2012, 4, 278-305 (2012) · Zbl 1277.62249
[11] Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models (2006), John Wiley & Sons
[12] Denuit, M.; Genest, C.; Marceau, É., Criteria for the stochastic ordering of random sums, with actuarial applications, Scand. Actuar. J., 2002, 1, 3-16 (2002) · Zbl 1003.60022
[13] Durante, F.; Sempi, C., Copula theory: An introduction, (Copula Theory and Its Applications (2010), Springer), 3-31
[14] Fang, Y., Hyper-Erlang distribution model and its application in wireless mobile networks, Wirel. Netw., 7, 3, 211-219 (2001) · Zbl 1012.68945
[15] Frees, E. W.; Gao, J.; Rosenberg, M. A., Predicting the frequency and amount of health care expenditures, N. Am. Actuar. J., 15, 3, 377-392 (2011)
[16] Garrido, J.; Genest, C.; Schulz, J., Generalized linear models for dependent frequency and severity of insurance claims, Insurance Math. Econom., 70, 205-215 (2016) · Zbl 1373.62515
[17] Gschlossl, S.; Czado, C., Spatial modelling of claim frequency and claim size in non-life insurance, Scand. Actuar. J., 2007, 3, 202-225 (2007) · Zbl 1150.91026
[18] Hofert, M., Sampling Archimedean copulas, Comput. Statist. Data Anal., 52, 12, 5163-5174 (2008) · Zbl 1452.62070
[19] Joe, H., Multivariate Models and Multivariate Dependence Concepts (1997), CRC Press · Zbl 0990.62517
[20] Joe, H., Dependence Modeling with Copulas (2014), CRC Press · Zbl 1346.62001
[21] Klugman, S. A.; Panjer, H. H.; Willmot, G. E.; Venter, G., Loss models: From data to decisions, Ann. Actuar. Sci., 4, 2, 343 (2009)
[22] Kotz, S.; Balakrishnan, N.; Johnson, N. L., Continuous multivariate distributions, (Models and Applications, vol. 1 (2004), John wiley & sons)
[23] Kousky, C.; Cooke, R. M., The unholy trinity: Fat tails, tail dependence, and micro-correlations. Resources for the future, Discuss. Pap., 09, 36, 1-36 (2009)
[24] Krämer, N.; Brechmann, E. C.; Silvestrini, D.; Czado, C., Total loss estimation using copula-based regression models, Insurance Math. Econom., 53, 3, 829-839 (2013) · Zbl 1290.91092
[25] Landriault, D.; Lee, W. Y.; Willmot, G. E.; Woo, J.-K., A note on deficit analysis in dependency models involving coxian claim amounts, Scand. Actuar. J., 2014, 5, 405-423 (2014) · Zbl 1401.91157
[26] Lee, S. C.; Lin, X. S., Modeling and evaluating insurance losses via mixtures of Erlang distributions, N. Am. Actuar. J., 14, 1, 107-130 (2010)
[27] Lee, S. C.; Lin, X. S., Modeling dependent risks with multivariate Erlang mixtures, ASTIN Bull. : J. IAA, 42, 1, 153-180 (2012) · Zbl 1277.62255
[28] Liu, H.; Wang, R., Collective risk models with dependence uncertainty, ASTIN Bull. : J. IAA, 47, 2, 361-389 (2017) · Zbl 1390.91196
[29] Marshall, A. W.; Olkin, I., Families of multivariate distributions, J. Amer. Statist. Assoc., 83, 403, 834-841 (1988) · Zbl 0683.62029
[30] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative Risk Management: Concepts, Techniques and Tools (2015), Princeton university press · Zbl 1337.91003
[31] Müller, A.; Stoyan, D., Comparison Methods for Stochastic Models and Risks, vol .389 (2002), Wiley
[32] Rolski, T.; Schmidli, H.; Schmidt, V.; Teugels, J. L., Stochastic Processes for Insurance and Finance (1999), John Wiley & Sons · Zbl 0940.60005
[33] Shaked, M.; Shanthikumar, J. G., Stochastic orders, (Science & Business Media (2007), Springer)
[34] Wei, G.; Hu, T., Supermodular dependence ordering on a class of multivariate copulas, Stat. Probab. Lett., 57, 4, 375-385 (2002) · Zbl 1005.60037
[35] Willmot, G. E.; Lin, X. S., Risk modelling with the mixed Erlang distribution, Appl. Stoch. Models Bus. Ind., 27, 1, 2-16 (2011)
[36] Willmot, G. E.; Woo, J.-K., On the class of Erlang mixtures with risk theoretic applications, N. Am. Actuar. J., 11, 2, 99-115 (2007) · Zbl 1480.91253
[37] Willmot, G. E.; Woo, J.-K., On some properties of a class of multivariate Erlang mixtures with insurance applications, ASTIN Bull. : J. IAA, 45, 1, 151-173 (2015) · Zbl 1390.62092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.