×

Tangent bimagnetic curves in terms of inextensible flows in space. (English) Zbl 1410.78007

Summary: In this work, we study inextensible flows of tangent bimagnetic particles in space. Moreover, we obtain the inextensible flows of electric field by Lorentz equation. Finally, we obtain new results for inextensible flows of tangent bimagnetic particles in space.

MSC:

78A35 Motion of charged particles
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q60 PDEs in connection with optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Farouki, R. T., Szafran, N. and Biard, L., Existence conditions for Coons patches interpolating geodesic boundary curves, Comput. Aided Des.26 (2009) 599. · Zbl 1205.65078
[2] Körpınar, T., On the Fermi-Walker derivative for inextensible flows, Z. Naturforsch. A70 (2015) 477.
[3] Körpinar, Z. S., Tuz, M. and Körpinar, T., New electromagnetic fluids inextensible flows of spacelike particles and some wave solutions in Minkowski space-time, Int. J. Theor. Phys.55 (2016) 8. · Zbl 1337.83099
[4] Kwon, D. Y. and Park, F. C., Evolution of inelastic plane curves, Appl. Math. Lett.12 (1999) 115. · Zbl 0964.53006
[5] Körpınar, T., Bianchi Type-I cosmological models for inextensible flows of biharmonic particles by using curvature tensor field in spacetime, Int. J. Theor. Phys.54 (2015) 1762. · Zbl 1328.83048
[6] Baş, S. and Körpınar, T., A new characterization of one parameter family of surfaces by inextensible flows in de-sitter 3-space, J. Adv. Phys.7 (2018) 251.
[7] Körpinar, Z. S., Turhan, E. and Tuz, M., Bianchi Type-I cosmological models for integral representation formula and some solutions in spacetime, Int. J. Theor. Phys.54(9) (2015) 3195-3202. · Zbl 1327.83086
[8] Körpınar, T., New inextensible flows of principal normal spherical image, Asian-Eur. J. Math.11 (2018) 1850001 · Zbl 1393.35173
[9] Yeneroğlu, M., On new characterization of inextensible flows of spacelike curves in De-Sitter space, Open Math.14 (2016) 946. · Zbl 1355.53050
[10] Yeneroğlu, M. and Körpınar, T., A new construction of Fermi-Walker derivative by focal curves according to modified frame, J. Adv. Phys.7 (2018) 292.
[11] Barros, M., Romero, A., Cabrerizo, J. L. and Fernandez, M., The Gauss-Landau-Hall problem on Riemannian surfaces, J. Math. Phys.46 (2005) 112905. · Zbl 1111.78006
[12] Cabrerizo, J. L., Fernandez, M. and Gómez, J. S., The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A42(19) (2009) 195201. · Zbl 1188.78002
[13] Calvaruso, G., Munteanu, M. I. and Perrone, A., Killing magnetic curves in three-dimensional almost paracontact manifolds, J. Math. Anal. Appl.426 (2015) 423. · Zbl 1322.53033
[14] Körpınar, T., A note on Fermi-Walker derivative with constant energy for tangent indicatrix of slant helix in the Lie groups, J. Adv. Phys.7 (2018) 230.
[15] Körpınar, T., On velocity magnetic curves in terms of inextensible flows in space, J. Adv. Phys.7 (2018) 257. · Zbl 1424.53031
[16] Körpınar, T. and Demirkol, R. C., Gravitational magnetic curves on 3D Riemannian manifolds, Int. J. Geom. Methods Mod. Phys.15 (2018) 1850184. · Zbl 1416.78008
[17] Körpınar, T. and Demirkol, R. C., Frictional magnetic curves in 3D Riemannian manifolds, Int. J. Geom. Methods Mod. Phys.15 (2018) 1850020. · Zbl 1387.78006
[18] Körpınar, T., A new version of normal magnetic force particles in 3D Heisenberg Space, Adv. Appl. Clifford Algebras28(4) (2018) 1. · Zbl 1400.78006
[19] Körpınar, T., On \(T\)-Magnetic biharmonic particles with energy and angle in the three dimensional heisenberg group \(\Bbb H\), Adv. Appl. Clifford Algebras28(1) (2018) 1. · Zbl 1392.53044
[20] Druta-Romaniuc, S. L. and Munteanu, M. I., Magnetic curves corresponding to killing magnetic fields in \(E^3\), J. Math. Phys.52(11) (2011) 1. · Zbl 1272.37020
[21] Druta-Romaniuc, S. L. and Munteanu, M. I., Killing magnetic curves in a Minkowski 3-space, Nonlinear Anal. Real Word Appl.14(1) (2013) 383. · Zbl 1255.53016
[22] Coronel-Escamilla, A., Gomez-Angular, J. F., Alvarado-Mendez, E., Guerrero-Ramirez, G. V. and Escobar-Jimenez, R. F., Fractional dynamics of charged particles in magnetic fields, Int. J. Mod. Phys. C27 (2016) 1650084.
[23] Gonzales-Catoldo, F., Gutierrez, G. and Yanez, J. M., Sliding down an arbitrary curve in the presence of friction, Am. J. Phys.85 (2017) 108.
[24] Unger, D. J., Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract.50 (1991) 33.
[25] Barros, M. and Romero, A., Magnetic vortices, Europhys. Lett.77 (2007) 34002.
[26] Gray, A., Abbena, E. and Salamon, S., Modern Differential Geometry of curves and surfaces with Mathematica (CRC Press, Boca Ration, 1997). · Zbl 1123.53001
[27] Kwon, D. Y., Park, F. C. and Chi, D. P., Inextensible flows of curves and developable surfaces, Appl. Math. Lett.18 (2005) 1156. · Zbl 1085.53058
[28] Kazan, A. and Karadağ, H. B., 2-Magnetic curves in Euclidean 3-space, Theor. Math. Appl.7 (2017) 15. · Zbl 1368.53016
[29] Körpınar, T. and Demirkol, R. C., Energy on a timelike particle in dynamical and electrodynamical force fields in De-Sitter space, Rev. Mex. Fis.63 (2017) 560. · Zbl 1395.53002
[30] Körpınar, T., Demirkol, R. C. and Asil, V., The motion of a relativistic charged particle in a homogeneous electromagnetic field in De-Sitter space, Rev. Mex. Fis.64 (2018) 176. · Zbl 1399.53023
[31] Synge, J. L., Relativity: The General Theory (North Holland, Amsterdam, 1960). · Zbl 0090.18504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.