×

Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation. (English) Zbl 1410.76397

Summary: This paper presents a novel ensemble Kalman filter (EnKF) data assimilation method based on a parameterised non-intrusive reduced order model (P-NIROM) which is independent of the original computational code. EnKF techniques involve the expensive calculations of ensembles. In this work, the recently developed P-NIROM [the first author et al., “A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications”, Comput. Methods Appl. Mech. Eng. 317, 868–889 (2017; doi:10.1016/j.cma.2016.12.033)] is incorporated into EnKF to speed up the ensemble simulations. A reduced order flow dynamical model is generated from the solution snapshots, which are obtained from a number of the high fidelity full simulations over the specific parametric space \(R^P\). The varying parameter is the background error covariance \(\sigma \in R^P\). Using the Smolyak sparse grid method, a set of parameters in the Gaussian probability density function is selected as the training points. The proposed method uses a two-level interpolation method for constructing the P-NIROM using a radial basis function (RBF) interpolation method. The first level interpolation approach is used for generating the solution snapshots and POD basis functions for any given background error covariance while the second level interpolation approach for forming a set of hyper-surfaces representing the reduced system. The EnKF in combination with P-NIROM (P-NIROM-EnKF) has been implemented within an unstructured mesh finite element ocean model and applied to a three dimensional wind driven circulation gyre case. The numerical results show that the accuracy of ensembles and updated solutions using the P-NIROM-EnKF is maintained while the computational cost is significantly reduced by several orders of magnitude in comparison to the full-EnKF.

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics

Software:

EnKF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altaf, M.; El Gharamti, M.; Heemink, A. W.; Hoteit, I., A reduced adjoint approach to variational data assimilation, Comput Methods Appl Mech Eng, 254, 1-13, (2013) · Zbl 1297.93053
[2] Ballard, S. P.; Li, Z.; Simonin, D.; Caron, J.-F., Performance of 4d-var nwp-based nowcasting of precipitation at the met office for summer 2012, Q J R Meteorolog Soc, 142, 694, 472-487, (2016)
[3] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C R Acad Sci Paris, Ser, 339, 667-672, (2004) · Zbl 1061.65118
[4] Buhmann, M. D., Radial basis functions: theory and implementations, 12, (2003), Cambridge university press · Zbl 1038.41001
[5] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J Comput Phys, 242, 623-647, (2013) · Zbl 1299.76180
[6] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J Sci Comput, 32, 2737-2764, (2010) · Zbl 1217.65169
[7] Chen, Y.; Oliver, D. S., Cross-covariances and localization for enkf in multiphase flow data assimilation, Comput Geosci, 14, 4, 579-601, (2010) · Zbl 1381.86026
[8] Dimitriu, G.; Apreutesei, N., Comparative study with data assimilation experiments using proper orthogonal decomposition method, International Conference on Large-Scale Scientific Computing, 393-400, (2007), Springer · Zbl 1229.35303
[9] Dimitriu, G.; Apreutesei, N. C.; Stefanescu, R., Numerical Simulations with Data Assimilation Using an Adaptive POD Procedure, LSSC, 165-172, (2009), Springer · Zbl 1280.65006
[10] Du, J.; Fang, F.; Pain, C. C.; Navon, I.; Zhu, J.; Ham, D. A., POD Reduced-order unstructured mesh modeling applied to 2d and 3d fluid flow, Computers and Mathematics with Applications, 65, 3, 362-379, (2013) · Zbl 1319.76026
[11] Evensen, G., Data assimilation: the ensemble kalman filter, (2009), Springer Science & Business Media · Zbl 1395.93534
[12] Evensen, G.; Hove, J.; Meisingset, H.; Reiso, E.; Seim, K. S.; Espelid, Ø., Using the enkf for assisted history matching of a north sea reservoir model, SPE reservoir simulation symposium, (2007), Society of Petroleum Engineers
[13] Fang, F.; Pain, C.; Navon, I.; Piggott, M.; Gorman, G.; Allison, P., Reduced-order modelling of an adaptive mesh ocean model, Int J Numer Methods Fluids, 59, 8, 827-851, (2009) · Zbl 1155.86004
[14] Farrell, B. F.; Ioannou, P. J., State estimation using a reduced-order kalman filter, J Atmos Sci, 58, 23, 3666-3680, (2001)
[15] Feriedoun Sabetghadam, A. J., α Regularization of the POD-galerkin dynamical systems of the kuramoto-sivashinsky equation, Appl Math Comput, 218, 6012-6026, (2012) · Zbl 1246.65180
[16] Fang, F.; Pain, C.; Navon, I.; Elsheikh, A.; Du, J.; Xiao, D., Non-linear petrov-galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J Comput Phys, 234, 540-559, (2013) · Zbl 1284.65132
[17] Gunzburger, M.; Jiang, N.; Schneier, M., An ensemble-proper orthogonal decomposition method for the nonstationary navier-stokes equations, SIAM J Numer Anal, 55, 1, 286-304, (2017) · Zbl 1394.76067
[18] Han, C., Blackbox stencil interpolation method for model reduction, (2012), Massachusetts Institute of Technology
[19] He, J.; Sarma, P.; Durlofsky, L. J., Use of reduced-order models for improved data assimilation within an enkf context, SPE Reservoir Simulation Symposium, (2011), Society of Petroleum Engineers
[20] Hoteit, I.; Pham, D.-T.; Blum, J., A simplified reduced order kalman filtering and application to altimetric data assimilation in tropical pacific, J Mar Syst, 36, 1-2, (2002)
[21] Houtekamer, P. L.; Mitchell, H. L.; Pellerin, G.; Buehner, M.; Charron, M.; Spacek, L., Atmospheric data assimilation with an ensemble kalman filter: results with real observations, Mon Weather Rev, 133, 3, 604-620, (2005)
[22] K. Carlberg, C. B.-M.; Farhat, C., Efficient non-linear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations, Intern J Numer Methods Eng, 86, 155-181, (2011) · Zbl 1235.74351
[23] Langodan, S.; Viswanadhapalli, Y.; Hoteit, I., The impact of atmospheric data assimilation on wave simulations in the red sea, Ocean Eng, 116, 200-215, (2016)
[24] Lin, B.; McLaughlin, D., Efficient characterization of uncertain model parameters with a reduced-order ensemble kalman filter, SIAM J Sci Comput, 36, 2, B198-B224, (2014)
[25] Liu, B.; Gharamti, M.; Hoteit, I., Assessing clustering strategies for gaussian mixture filtering a subsurface contaminant model, J Hydrol (Amst), 535, 1-21, (2016)
[26] Osth, J.; Noack, B. R.; Krajnovi, S.; Barros, D.; Bore, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an ahmed body, J Fluid Mech, 747, 518-544, (2014) · Zbl 1371.76085
[27] Rosenthal, W. S.; Venkataramani, S.; Mariano, A. J.; Restrepo, J. M., Displacement data assimilation, J Comput Phys, 330, 594-614, (2017) · Zbl 1378.93127
[28] Schlegel, M.; Noack, B. R., On long-term boundedness of galerkin models, J Fluid Mech, 765, 325-352, (2015) · Zbl 1336.76014
[29] Ştefănescu, R.; Sandu, A.; Navon, I. M., POD/DEIM Reduced-order strategies for efficient four dimensional variational data assimilation, J Comput Phys, 295, 569-595, (2015) · Zbl 1349.76535
[30] Stefano, P.; Andrea, M.; Alfio, Q., A reduced basis ensemble kalman filter for state/parameter identification in large-scale nonlinear dynamical systems, (2016)
[31] Tian, X.; Xie, Z.; Sun, Q., A pod-based ensemble four-dimensional variational assimilation method, Tellus A, 63, 4, 805-816, (2011)
[32] Tsiaras, K. P.; Hoteit, I.; Kalaroni, S.; Petihakis, G.; Triantafyllou, G., A hybrid ensemble-oi kalman filter for efficient data assimilation into a 3-d biogeochemical model of the mediterranean, Ocean Dyn, 1-18, (2017)
[33] Walton, S.; Hassan, O.; Morgan, K., Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions, Appl Math Model, 37, 20, 8930-8945, (2013) · Zbl 1426.76576
[34] Willcox, K.; Megretski, A., Model reduction for large-scale linear applications, Proc. of 13th IFAC Symposium on System Identification, Rotterdam, Netherlands, 1431-1436, (2003)
[35] Xiao, D., Non-intrusive reduced order models and their applications, (2016), Imperial College London
[36] Xiao, D.; Fang, F.; Buchan, A.; Pain, C.; Navon, I.; Muggeridge, A., Non-intrusive reduced order modelling of the navier-stokes equations, Comput Methods Appl Mech Eng, 293, (2015)
[37] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C.; Navon*, I.; Du, J., Non-linear model reduction for the navier-stokes equations using residual DEIM method, J Comput Phys, 263, 1-18, (2014) · Zbl 1349.76288
[38] Xiao, D.; Fang, F.; Du, J.; Pain, C.; Navon, I.; Buchan, A. G., Non-linear petrov-galerkin methods for reduced order modelling of the navier-stokes equations using a mixed finite element pair, Comput Methods Appl Mech Eng, 255, 147-157, (2013) · Zbl 1297.76107
[39] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced order modelling of the navier-stokes equations based on RBF interpolation, Int J Numer Methods Fluids, 79, 11, 580-595, (2015)
[40] Xiao, D.; Fang, F.; Pain, C.; Navon, I., A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput Methods Appl Mech Eng, 317, 868-889, (2017)
[41] Chu, M. S.Y.; Hahn, J., State-preserving nonlinear model reduction procedure, Chemical Engineering Science, 66, 3907-3913, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.