zbMATH — the first resource for mathematics

A microlocal approach to the enhanced Fourier-Sato transform in dimension one. (English) Zbl 1410.32007
Let \(V\) be a one-dimensional complex vector space and \(V^*\) its dual. The Fourier transform at the Weyl algebra level gives the isomorphism \(z\to-\partial_w\), \(\partial_z\to w\) which induces an equivalence between holonomic algebraic \({\mathcal D}\)-modules \({\mathcal M}\) on \(V\) and on \(V^*\) denoted by \({\mathcal M}\to {}^L{\mathcal M}\). At a microlocal level the Fourier transform is attached to the standard symplectic transform \(\chi:T^* V\to T^* V^*\). This way a Legendre transform from Puiseux germs on \(V\) to Puiseux germs on \(V^*\) appears. The exponential factors of a holonomic algebraic \({\mathcal D}_V\) module \({\mathcal M}\) are Puiseux germs on \(V\) which describe the growth of holomorphic solutions at irregular points. According to the stationary phase formula formulated in Theorem 1.1. the exponential factors of \(^L{\mathcal M}\) are obtained via Legendre transform from the exponential factors of \({\mathcal M}\).
The above-mentioned formula can be restated in terms of another realization of the Fourier transform, namely the Fourier-Sato transform for enhanced ind-sheaves. To do this the Riemann-Hilbert correspondence should be used. A microlocal proof of the stationary phase formula is given in the main result of the paper under consideration (Theorem 7.5.1.).

32C38 Sheaves of differential operators and their modules, \(D\)-modules
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
30E15 Asymptotic representations in the complex plane
Full Text: DOI
[1] Abbes, A.; Saito, T., Local Fourier transform and epsilon factors, Compos. Math., 146, 6, 1507-1551, (2010) · Zbl 1206.14034
[2] Abe, T.; Marmora, A., Product formula for p-adic epsilon factors, J. Inst. Math. Jussieu, 14, 2, 275-377, (2015) · Zbl 1319.14025
[3] Arinkin, D., Rigid irregular connections on \(\mathbb{P}^1\), Compos. Math., 146, 5, 1323-1338, (2010) · Zbl 1200.14035
[4] Bloch, S.; Esnault, H., Local Fourier transforms and rigidity for D-modules, Asian J. Math., 8, 4, 587-605, (2004) · Zbl 1082.14506
[5] D’Agnolo, A., On the Laplace transform for tempered holomorphic functions, Int. Math. Res. Not., 2014, 16, 4587-4623, (2014) · Zbl 1304.32006
[6] D’Agnolo, A.; Hien, M.; Morando, G.; Sabbah, C., Topological computations of some Stokes phenomena, (2017), 51 pp
[7] D’Agnolo, A.; Kashiwara, M., Riemann-Hilbert correspondence for holonomic D-modules, Publ. Math. Inst. Hautes Études Sci., 123, 1, 69-197, (2016) · Zbl 1351.32017
[8] D’Agnolo, A.; Kashiwara, M., Enhanced perversities, J. Reine Angew. Math., (2016), ahead of print, 57 pp
[9] A. D’Agnolo, M. Kashiwara, Enhanced specialization with applications to the Fourier-Laplace transform in dimension one, in preparation.
[10] Deligne, P., Lettre à malgrange du 19/4/1978, (Singularités irregulières, Correspondance et documents, Documents mathématiques, vol. 5, (2007), Société Mathématique de France Paris), 25-26
[11] Fang, J., The principle of stationary phase for the Fourier transform of D-modules, Pacific J. Math., 254, 1, 117-128, (2011) · Zbl 1241.14010
[12] Fu, L., Calculation of -adic local Fourier transformations, Manuscripta Math., 133, 3-4, 409-464, (2010) · Zbl 1206.14035
[13] García López, R., Microlocalization and stationary phase, Asian J. Math., 8, 4, 747-768, (2004) · Zbl 1100.32005
[14] Graham-Squire, A., Calculation of local formal Fourier transforms, Ark. Mat., 51, 1, 71-84, (2013) · Zbl 1271.14023
[15] Guillermou, S.; Schapira, P., Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, (Homological Mirror Symmetry and Tropical Geometry, Lecture Notes of the Unione Matematica Italiana, vol. 15, (2014), Springer Berlin), 43-85 · Zbl 1319.32006
[16] Hien, M.; Sabbah, C., The local Laplace transform of an elementary irregular meromorphic connection, Rend. Semin. Mat. Univ. Padova, 134, 133-196, (2015) · Zbl 1330.14012
[17] Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20, 2, 319-365, (1984) · Zbl 0566.32023
[18] Kashiwara, M., D-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217, (2003), Am. Math. Soc. Providence, xvi+254 pp
[19] Kashiwara, M., Riemann-Hilbert correspondence for irregular holonomic \(\mathcal{D}\)-modules, Jpn. J. Math., 11, 1, 113-149, (2016) · Zbl 1351.32001
[20] Kashiwara, M.; Schapira, P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, (1990), Springer Berlin, x+512 pp
[21] Kashiwara, M.; Schapira, P., Ind-sheaves, Astérisque, 271, (2001), 136 pp · Zbl 0993.32009
[22] Kashiwara, M.; Schapira, P., Irregular holonomic kernels and Laplace transform, Selecta Math., 22, 1, 55-109, (2016) · Zbl 1337.32020
[23] Kashiwara, M.; Schapira, P., Regular and irregular holonomic D-modules, London Mathematical Society Lecture Note Series, vol. 433, (2016), Cambridge University Press Cambridge, vi+111 pp · Zbl 1354.32008
[24] Katz, N.; Laumon, G., Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math., 62, 361-418, (1985) · Zbl 0603.14015
[25] Laumon, G., Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math., 65, 131-210, (1987) · Zbl 0641.14009
[26] Malgrange, B., Équations différentielles à coefficients polynomiaux, Progress in Mathematics, vol. 96, (1991), Birkhäuser, vi+232 pp · Zbl 0764.32001
[27] Mochizuki, T., Note on the Stokes structure of Fourier transform, Acta Math. Vietnam., 35, 1, 107-158, (2010) · Zbl 1201.32016
[28] Mochizuki, T., Curve test for enhanced ind-sheaves and holonomic D-modules, (2016), 87 pp
[29] Ramero, L., Hasse-arf filtrations in p-adic analytic geometry, J. Algebraic Geom., 21, 1, 97-182, (2012) · Zbl 1236.14028
[30] Sabbah, C., An explicit stationary phase formula for the local formal Fourier-Laplace transform, (Singularities I, Contemp. Math., vol. 474, (2008), Amer. Math. Soc. Providence, RI), 309-330 · Zbl 1162.32018
[31] Sabbah, C., Introduction to Stokes structures, Lect. Notes in Math., vol. 2060, (2013), Springer, xiv+249 pp · Zbl 1260.34002
[32] Sabbah, C., Differential systems of pure Gaussian type, Izv. Ross. Akad. Nauk Ser. Mat., Izv. Math., 80, 1, 189-220, (2016), translation in · Zbl 1339.14011
[33] Tamarkin, D., Microlocal condition for non-displaceability, (2008), 93 pp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.