×

zbMATH — the first resource for mathematics

Schwinger effect impacting primordial magnetogenesis. (English) Zbl 1409.83240
Summary: We explore the enhancement of an electromagnetic field in an inflationary background with an anti-conductive plasma of scalar particles. The scalar particles are created by Schwinger effect in curved spacetime and backreact to the electromagnetic field. The possibility of a negative conductivity was recently put forward in the context of the renormalization of the Schwinger induced current in de Sitter spacetime. While a negative conductivity enhances the produced magnetic field, we find that it is too weak to seed the observed intergalactic magnetic field today. This results on pair creation in inflationary scenario is however important for primordial scenarios of magnetogenesis as the presence of a conductivity alters the spectral index of the magnetic field. This also shows on a specific example that backreaction can increase the electromagnetic field and not only suppress it.

MSC:
83F05 Cosmology
83C50 Electromagnetic fields in general relativity and gravitational theory
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
81V10 Electromagnetic interaction; quantum electrodynamics
81T20 Quantum field theory on curved space or space-time backgrounds
83C47 Methods of quantum field theory in general relativity and gravitational theory
85A05 Galactic and stellar dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Neronov, A.; Vovk, I., Science, 328, 73, (2010)
[2] Brandenburg, A.; Subramanian, K., Phys. Rep., 417, 1, (2005)
[3] Durrer, R.; Neronov, A., Astron. Astrophys. Rev., 21, 62, (2013)
[4] Grasso, D.; Rubinstein, H. R., Phys. Rep., 348, 163, (2001)
[5] Kandus, A.; Kunze, K. E.; Tsagas, C. G., Phys. Rep., 505, 1, (2011)
[6] Subramanian, K., Rep. Prog. Phys., 79, (2016)
[7] Vachaspati, T., Phys. Lett. B, 265, 258, (1991)
[8] Sigl, G.; Olinto, A. V.; Jedamzik, K., Phys. Rev. D, 55, 4582, (1997)
[9] Durrer, R.; Caprini, C., J. Cosmol. Astropart. Phys., 0311, (2003)
[10] Turner, M. S.; Widrow, L. M., Phys. Rev. D, 37, 2743, (1988)
[11] Ratra, B., Astrophys. J., 391, L1, (1992)
[12] Gasperini, M.; Giovannini, M.; Veneziano, G., Phys. Rev. Lett., 75, 3796, (1995)
[13] Giovannini, M.; Shaposhnikov, M. E., Phys. Rev. D, 62, (2000)
[14] Davis, A.-C.; Dimopoulos, K.; Prokopec, T.; Tornkvist, O., Phys. Lett. B. Phys. Lett. B, Phys. Rev. Focus, 10, 9, (2002)
[15] Bamba, K.; Yokoyama, J., Phys. Rev. D, 69, (2004)
[16] Anber, M. M.; Sorbo, L., J. Cosmol. Astropart. Phys., 0610, (2006)
[17] Martin, J.; Yokoyama, J., J. Cosmol. Astropart. Phys., 0801, (2008)
[18] Demozzi, V.; Mukhanov, V.; Rubinstein, H., J. Cosmol. Astropart. Phys., 0908, (2009)
[19] Durrer, R.; Hollenstein, L.; Jain, R. K., J. Cosmol. Astropart. Phys., 1103, (2011)
[20] Ferreira, R. J.Z.; Jain, R. K.; Sloth, M. S., J. Cosmol. Astropart. Phys., 1310, (2013)
[21] Ferreira, R. J.Z.; Jain, R. K.; Sloth, M. S., J. Cosmol. Astropart. Phys., 1406, (2014)
[22] Himmetoglu, B.; Contaldi, C. R.; Peloso, M., Phys. Rev. D, 80, (2009)
[23] Garretson, W. D.; Field, G. B.; Carroll, S. M., Phys. Rev. D, 46, 5346, (1992)
[24] Banerjee, R.; Jedamzik, K., Phys. Rev. D, 70, (2004)
[25] Caprini, C.; Sorbo, L., J. Cosmol. Astropart. Phys., 1410, (2014)
[26] Bamba, K.; Ohta, N.; Tsujikawa, S., Phys. Rev. D, 78, (2008)
[27] Kanno, S.; Soda, J.; Watanabe, M.-a., J. Cosmol. Astropart. Phys., 0912, (2009)
[28] Barnaby, N.; Namba, R.; Peloso, M., Phys. Rev. D, 85, (2012)
[29] Bonvin, C.; Caprini, C.; Durrer, R., Phys. Rev. D, 88, (2013)
[30] Fujita, T.; Yokoyama, S., J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys., J. Cosmol. Astropart. Phys., 1405, (2014), Erratum:
[31] Bonvin, C.; Caprini, C.; Durrer, R., Phys. Rev. D, 86, (2012)
[32] Himmetoglu, B.; Contaldi, C. R.; Peloso, M., Phys. Rev. Lett., 102, (2009)
[33] Kobayashi, T.; Afshordi, N., J. High Energy Phys., 2014, (2014)
[34] Sharma, R.; Jagannathan, S.; Seshadri, T. R.; Subramanian, K., Phys. Rev. D, 96, (2017)
[35] Sauter, F., Z. Phys., 69, 742, (1931)
[36] Heisenberg, W.; Euler, H., Z. Phys., 98, 714, (1936)
[37] Schwinger, J., Phys. Rev., 82, 664, (1951)
[38] Gelis, F.; Tanji, N., Prog. Part. Nucl. Phys., 87, 1, (2016)
[39] Garriga, J., Phys. Rev. D, 49, 6327, (1994)
[40] Kim, S. P.; Page, D. N., Phys. Rev. D, 78, (2008)
[41] Fröb, M. B.; Garriga, J.; Kanno, S.; Sasaki, M.; Soda, J.; Tanaka, T.; Vilenkin, A., J. Cosmol. Astropart. Phys., 2014, (2014)
[42] Stahl, C.; Strobel, E.; Xue, S.-S., Phys. Rev. D, 93, (2016)
[43] Stahl, C.; Xue, S.-S., Phys. Lett. B, 760, 288, (2016)
[44] Hayashinaka, T.; Fujita, T.; Yokoyama, J., J. Cosmol. Astropart. Phys., 1607, (2016)
[45] Hayashinaka, T.; Yokoyama, J., J. Cosmol. Astropart. Phys., 1607, (2016)
[46] Yokoyama, J., C. R. Phys., 16, 1018, (2015)
[47] Geng, J.-J.; Li, B.-F.; Soda, J.; Wang, A.; Wu, Q.; Zhu, T., J. Cosmol. Astropart. Phys., 1802, (2018)
[48] Sharma, R.; Singh, S., Phys. Rev. D, 96, (2017)
[49] Bavarsad, E.; Kim, S. P.; Stahl, C.; Xue, S.-S., Phys. Rev. D, 97, (2018)
[50] Giovannini, M., Phys. Rev. D, 97, (2018)
[51] Hayashinaka, T.; Xue, S.-S., Phys. Rev. D, 97, (2018)
[52] Ferreiro, A.; Navarro-Salas, J., Phys. Rev. D, 97, (2018)
[53] Banyeres, M.; Domènech, G.; Garriga, J., J. Cosmol. Astropart. Phys., 1810, (2018)
[54] Chua, W. Z.; Ding, Q.; Wang, Y.; Zhou, S., (2018)
[55] Kitamoto, H., Phys. Rev. D, 98, (2018)
[56] Sobol, O. O.; Gorbar, E. V.; Kamarpour, M.; Vilchinskii, S. I., Phys. Rev. D, 98, (2018)
[57] Stahl, C.; Eckhard, S., AIP Conf. Proc., 1693, (2015)
[58] Ferreiro, A.; Navarro-Salas, J.; Pla, S., Phys. Rev. D, 98, (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.