×

zbMATH — the first resource for mathematics

An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation. (English) Zbl 1409.76093
Summary: In this paper, an upwind compact difference method with second-order accuracy both in space and time is proposed for the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equations. The first derivatives of streamfunction (velocities) are discretized by two type compact schemes, viz. the third-order upwind compact schemes suggested with the characteristic of low dispersion error are used for the advection terms and the fourth-order symmetric compact scheme is employed for the biharmonic term. As a result, a five point constant coefficient second-order compact scheme is established, in which the computational stencils for streamfunction only require grid values at five points at both \((n)\)th and \((n+1)\)th time levels. The new scheme can suppress non-physical oscillations. Moreover, the unconditional stability of the scheme for the linear model is proved by means of the discrete von Neumann analysis. Four numerical experiments involving a test problem with the analytic solution, doubly periodic double shear layer flow problem, lid driven square cavity flow problem and two-sided non-facing lid driven square cavity flow problem are solved numerically to demonstrate the accuracy and efficiency of the newly proposed scheme. The present scheme not only shows the good numerical performance for the problems with sharp gradients, but also proves more effective than the existing second-order compact scheme of the streamfunction-velocity formulation in the aspect of computational cost.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ben-Artzi, M.; Fishelov, D.; Trachtenberg, S., Vorticity dynamics and numerical resolution of Navier-Stokes equations, Math. Modelling Numer. Anal., 35, 313-330, (2001) · Zbl 0987.35122
[2] Gupta, M. M.; Kalita, J. C., A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation, J. Comput. Phys., 207, 52-68, (2005) · Zbl 1177.76257
[3] Tian, Z. F.; Yu, P. X., An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 6404-6419, (2011) · Zbl 1408.76394
[4] Tian, Z. F.; Liang, X.; Yu, P. X., A higher order compact finite difference algorithm for solving the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 88, 6, 511-532, (2011) · Zbl 1242.76216
[5] Holdeman, J. T., A velocity-stream function method for three-dimensional incompressible fluid flow, Comput. Methods Appl. Mech. Engrg., 209-212, 66-73, (2012) · Zbl 1243.76019
[6] Kupferman, R., A central-difference scheme for a pure stream function formulation of incompressible viscous flow, SIAM J. Sci. Comput., 23, 1, 1-18, (2002) · Zbl 0995.76060
[7] Bubnovich, V. I.; Rosas, C. E.; Moraga, N. O., A stream function implicit finite deifference scheme for 2D incompressible flows of Newtonian fluids, Internat. J. Numer. Methods Engrg., 53, 2163-2184, (2002) · Zbl 1015.76059
[8] Kobayashi, M. H.; Pereira, J. M.C., A computational stream function method for two-dimensioanl incompressible viscous flows, Internat. J. Numer. Methods Engrg., 62, 1950-1981, (2005) · Zbl 1118.76340
[9] Ben-Artzi, M.; Croisille, J. P.; Fishelov, D.; Trachtenberg, S., A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations, J. Comput. Phys., 205, 2, 640-664, (2005) · Zbl 1087.76025
[10] Ben-Artzi, M.; Croisille, J. P.; Fishelov, D., A high order compact scheme for the pure-streamfunction formulation of the Navier-Stokes equations, J. Sci. Comput., 42, 2, 216-250, (2010) · Zbl 1203.76041
[11] Ben-Artzi, M.; Croisille, J. P.; Fishelov, D., Navier-Stokes equations in planar domains, (2013), Imperial College Press · Zbl 1273.35002
[12] Fishelov, D., A new fourth-order compact scheme for the Navier-Stokes equations in irregular domains, Comput. Math. Appl., 74, 6-25, (2017) · Zbl 1397.76092
[13] Kalita, J. C.; Gupta, M. M., A streamfunction-velocity approach for 2D transient incompressible viscous flows, Internat. J. Numer. Methods Fluids, 62, 3, 237-266, (2010) · Zbl 1377.76007
[14] Sen, S.; Kalita, J. C.; Gupta, M. M., A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic stream function formulation, Comput. & Fluids, 84, 141-163, (2013) · Zbl 1290.76025
[15] Pandit, S. K.; Karmakar, H., An efficient implicit compact streamfunction velocity formulation of two dimensional flows, J. Sci. Comput., 68, 2, 653-688, (2016) · Zbl 1397.76096
[16] Yu, P. X.; Tian, Z. F., A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier-Stokes equations, Comput. Math. Appl., 66, 7, 1192-1212, (2013) · Zbl 1381.76245
[17] Yu, P. X.; Tian, Z. F., A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier-Stokes equations in polar coordinates, J. Sci. Comput., 56, 1, 165-189, (2013) · Zbl 1266.76037
[18] Yu, P. X.; Tian, Z. F., Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity, Phys. Rev. E, 85, 3, 036703, (2012)
[19] Yu, P. X.; Qiu, J. X.; Qin, Q.; Tian, Z. F., Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field, Int. J. Heat Mass Transfer, 67, 1131-1144, (2013)
[20] Yu, P. X.; Tian, Z. F., Comparison of the simplified and full MHD models for laminar incompressible flow past a circular cylinder, Appl. Math. Model., 41, 143-163, (2017)
[21] Yu, P. X.; Tian, Z. F.; Ying, A. Y.; Abdou, M. A., Stream function-velocity-magnetic induction compact difference method for the 2D steady incompressible full magnetohydrodynamic equations, Comput. Phys. Comm., 219, 45-69, (2017) · Zbl 1411.76108
[22] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262-281, (1993) · Zbl 0790.76057
[23] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Company Boston · Zbl 1002.65042
[24] van Der Vorst, H. A., Bicgstab: a fast and smoothly converging variant of bicg for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput., 13, 631-644, (1992) · Zbl 0761.65023
[25] Gupta, M. M., High accuracy solution of incompressible Navier-Stokes equations, J. Comput. Phys., 93, 343-359, (1991) · Zbl 0729.76057
[26] Auteri, F.; Parolini, N.; Quartapelle, L., Numerical investigation on the stability of singular driven cavity flow, J. Comput. Phys., 183, 1-25, (2002) · Zbl 1021.76040
[27] Pan, T. W.; Glowinski, R., A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations, Comput. Fluid Dyn. J., 9, 28-42, (2000)
[28] Wahba, E. M., Multiplicity of states for two-sided and four-sided lid driven cavity flows, Comput. & Fluids, 38, 2, 247-253, (2009) · Zbl 1237.76031
[29] Ghia, U.; Ghia, K. N.; Shin, C. T., High re-solution for incompressible Navier-Stokes equation and a multigrid method, J. Comput. Phys., 48, 387-411, (1992) · Zbl 0511.76031
[30] Erturk, E.; Corke, T. C.; Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Internat. J. Numer. Methods Fluids, 48, 747-774, (2005) · Zbl 1071.76038
[31] Wahba, E. M., Steady flow simulations inside a driven cavity up to Reynolds number 35,000, Comput. & Fluids, 66, 85-97, (2012) · Zbl 1365.76203
[32] Erturk, E.; Gökçöl, C., Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers, Internat. J. Numer. Methods Fluids, 50, 421-436, (2006) · Zbl 1086.76053
[33] Wright, N. G.; Gaskell, P. H., An efficient multigrid approach to solving highly recirculating flows, Comput. & Fluids, 24, 63-79, (1995) · Zbl 0826.76055
[34] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput. & Fluids, 27, 421-433, (1998) · Zbl 0964.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.