×

zbMATH — the first resource for mathematics

Distance computation of ontology vector for ontology similarity measuring and ontology mapping. (English) Zbl 1409.68243
Summary: In recent years, various kinds of learning techniques are applied in ontology similarity measuring and ontology mapping algorithms. The essence of these learning tricks is attributed to obtaining obtain a score function which is employed for calculating the similarity between vertices. Since each vertex’s related information is denoted as a \(p\) dimensional vector, the similarity between ontology vertices is equivalent to determine the distance between their correspond vectors in the high dimensional space. In this paper, we raise a new ontology learning algorithm for ontology similarity measuring and ontology mapping by means of distance computation for ontology vectors. The optimal ontology distance function is learned in terms of regularization and first-order approaches. Then, two experiments using two different kinds of ontology convex function are presented. The result data show the effectiveness of our new ontology learning algorithm in special engineering applications.
MSC:
68T05 Learning and adaptive systems in artificial intelligence
62J02 General nonlinear regression
68T30 Knowledge representation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s11222-014-9476-y · Zbl 1331.62379 · doi:10.1007/s11222-014-9476-y
[2] DOI: 10.1016/j.ins.2014.10.013 · Zbl 06715831 · doi:10.1016/j.ins.2014.10.013
[3] DOI: 10.1016/j.eswa.2014.08.031 · doi:10.1016/j.eswa.2014.08.031
[4] DOI: 10.1007/s11063-012-9235-z · doi:10.1007/s11063-012-9235-z
[5] DOI: 10.1080/10556788.2013.835812 · Zbl 1282.90118 · doi:10.1080/10556788.2013.835812
[6] DOI: 10.1016/j.na.2015.09.005 · Zbl 1345.35058 · doi:10.1016/j.na.2015.09.005
[7] DOI: 10.1016/j.physletb.2015.10.071 · Zbl 06713618 · doi:10.1016/j.physletb.2015.10.071
[8] DOI: 10.1109/TIP.2015.2481707 · doi:10.1109/TIP.2015.2481707
[9] DOI: 10.1016/j.neunet.2015.07.015 · Zbl 1434.68500 · doi:10.1016/j.neunet.2015.07.015
[10] DOI: 10.1016/j.future.2014.05.004 · doi:10.1016/j.future.2014.05.004
[11] DOI: 10.1080/0951192X.2014.880802 · doi:10.1080/0951192X.2014.880802
[12] DOI: 10.1109/TIT.2013.2288257 · Zbl 1364.94270 · doi:10.1109/TIT.2013.2288257
[13] Craswell N., Proceeding of the Twelfth Text Retrieval Conference pp 78– (2003)
[14] DOI: 10.1016/j.ijthermalsci.2015.06.015 · doi:10.1016/j.ijthermalsci.2015.06.015
[15] Gao Y., Appl. Math. Nonlinear Sci. 1 (1) pp 154– (2016)
[16] DOI: 10.7763/IJMLC.2012.V2.97 · doi:10.7763/IJMLC.2012.V2.97
[17] Gao W., J. Chem. Pharm. Res. 5 (9) pp 592– (2013)
[18] Gao W., Information 15 (11) pp 4585– (2012)
[19] DOI: 10.1007/978-3-642-27314-8_56 · doi:10.1007/978-3-642-27314-8_56
[20] Gao W., Wulfenia 22 (1) pp 420– (2015)
[21] Gao W., BioTechnol.: Indian J 8 (11) pp 1572– (2013)
[22] DOI: 10.1155/2013/174802 · Zbl 1371.68234 · doi:10.1155/2013/174802
[23] Gao W., Energy Educ. Sci. Technol. Part A: Energ. Sci. Res 32 (5) pp 3793– (2014)
[24] DOI: 10.1504/IJCAT.2014.066732 · doi:10.1504/IJCAT.2014.066732
[25] DOI: 10.1155/2014/438291 · doi:10.1155/2014/438291
[26] DOI: 10.1016/j.cam.2014.12.028 · Zbl 1343.34153 · doi:10.1016/j.cam.2014.12.028
[27] DOI: 10.1016/S0304-3975(03)00138-5 · Zbl 1053.68053 · doi:10.1016/S0304-3975(03)00138-5
[28] DOI: 10.7763/IJAPM.2011.V1.11 · doi:10.7763/IJAPM.2011.V1.11
[29] DOI: 10.1007/s10543-011-0359-8 · Zbl 1256.65063 · doi:10.1007/s10543-011-0359-8
[30] DOI: 10.1016/j.patrec.2013.06.008 · doi:10.1016/j.patrec.2013.06.008
[31] DOI: 10.1080/0951192X.2013.874593 · doi:10.1080/0951192X.2013.874593
[32] DOI: 10.1016/j.knosys.2014.10.007 · doi:10.1016/j.knosys.2014.10.007
[33] DOI: 10.1016/j.jsv.2014.09.017 · doi:10.1016/j.jsv.2014.09.017
[34] Mostafa E.M.E., J. Comput. Math. 25 (6) pp 672– (2007)
[35] DOI: 10.1016/j.jde.2015.06.005 · Zbl 1336.34024 · doi:10.1016/j.jde.2015.06.005
[36] DOI: 10.1016/j.cogsys.2014.09.001 · doi:10.1016/j.cogsys.2014.09.001
[37] DOI: 10.1016/j.patcog.2015.06.013 · doi:10.1016/j.patcog.2015.06.013
[38] DOI: 10.1007/s12559-014-9268-x · doi:10.1007/s12559-014-9268-x
[39] DOI: 10.1007/s10455-015-9471-3 · Zbl 1333.53047 · doi:10.1007/s10455-015-9471-3
[40] DOI: 10.1080/17538947.2015.1040474 · doi:10.1080/17538947.2015.1040474
[41] DOI: 10.1109/TPAMI.2015.2409869 · doi:10.1109/TPAMI.2015.2409869
[42] Wu J.Z., Comput. Model. New Technol. 18 (8) pp 368– (2014)
[43] DOI: 10.1016/j.knosys.2014.09.004 · doi:10.1016/j.knosys.2014.09.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.