zbMATH — the first resource for mathematics

An analogue of the Titchmarsh theorem for the Fourier transform on the group of \(p\)-adic numbers. (English) Zbl 1409.11116
Summary: In this paper, for functions on the group \(\mathbb Q_p\), we prove an analogue of the classical Titchmarsh theorem on description of the image under the Fourier transform of a set of functions satisfying the Lipschitz condition in \(L^2\).

11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
Full Text: DOI
[1] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon Press, Oxford, 1937). · Zbl 0017.40404
[2] Platonov, S. S., The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces 1, Sib. Math. J., 46, 1108-1118, (2005) · Zbl 1150.42307
[3] Younis, M. S., Fourier transform of Lipschitz functions on the hyperbolic plane, Int. J. Math. & Math. Sci., 21, 397-401, (1998) · Zbl 0903.42002
[4] Daher, R.; Hamma, M., An analog of titchmarsh’s theorem of Jacobi transform, Int. J. Math. Anal., 6, 975-981, (2012) · Zbl 1248.33016
[5] Maslouhi, M., An analog of titchmarsh’s theorem for the Dunkl transform, Integ. Transf. Spec. Funct., 21, 771-778, (2010) · Zbl 1216.47057
[6] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994). · Zbl 0812.46076
[7] Vilenkin, N. Ya.; Rubinshtein, A. I., A theorem of S. B. Stechkin on absolute convergence of a series with respect to systems of characters of zero-dimensional abelian groups, SovietMath. (Izv. VUZ. Matematika), 19, 1-7, (1975)
[8] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups (Elm, Baku, 1981) [in Russian]. · Zbl 0588.43001
[9] Rubinshtein, A. I., Moduli of continuity of functions, defined on a zero-dimensional group, Math. Notes., 23, 205-211, (1978) · Zbl 0425.43011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.