×

On finite-time stability and stabilization of positive systems with impulses. (English) Zbl 1408.93091

Summary: This study investigates finite-time stability and stabilization problems for positive systems with impulses. By constructing a time-varying copositive Lyapunov function and utilizing the average impulsive interval approach, the finite-time stability criterion is established for the first time by exposing different impulsive effects. The relationship between the impulses and the length of the finite time interval is revealed via both theoretical analysis and simulations. As an extension, the finite-time \(L_1\) gain performance is also addressed. Based on the finite-time stability results, the finite-time controller design problem is studied to guarantee the positivity and finite-time stability of the corresponding closed-loop system. The obtained criteria can be checked by the linear programming method. Several numerical examples are provided to demonstrate the effectiveness of the theoretical results.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Farina, S. Rinaldi, Positive Linear Systems: Theory and Applications, vol. 50, John Wiley & Sons, 2011.; L. Farina, S. Rinaldi, Positive Linear Systems: Theory and Applications, vol. 50, John Wiley & Sons, 2011. · Zbl 0988.93002
[2] Johnson, C. R., Sufficient conditions for D-stability, J. Econ. Theory, 9, 1, 53-62 (2006)
[3] Arcak, M.; Sontag, E. D., Diagonal stability of a class of cyclic systems and its connection with the secant criterion, Automatica, 42, 9, 1531-1537 (2006) · Zbl 1132.39002
[4] Shorten, R.; Wirth, F.; Leith, D., A positive systems model of TCP-like congestion control: asymptotic results, IEEE-ACM Trans. Netw., 14, 3, 616-629 (2006)
[5] Silva Navarro, G.; Alvarez Gallegos, J., On the property sign-stability of equilibria in quasimonotone positive nonlinear systems, 33rd IEEE Conference on Decision and Control, 4043-4048 (1994), IEEE
[6] Meng, M.; Lam, J.; Feng, J. E.; Zhao, X.; Chen, X., Exponential stability analysis and \(l_1\) synthesis of positive T-S fuzzy systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 24, 186-197 (2017) · Zbl 1377.93095
[7] Xiang, M.; Xiang, Z., Stability, \(L_1\)-gain and control synthesis for positive switched systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 9, 1, 9-17 (2013) · Zbl 1287.93078
[8] Shen, J.; Lam, J., On static output-feedback stabilization for multi-input multi-output positive systems, Internat. J. Robust Nonlinear Control, 25, 16, 3154-3162 (2015) · Zbl 1327.93318
[9] Shu, Z.; Lam, J.; Gao, H.; Du, B.; Wu, L., Positive observers and dynamic output-feedback controllers for interval positive linear systems, IEEE Trans. Circuits Syst. I-Regul. Pap., 55, 10, 3209-3222 (2008)
[10] Zhang, J.; Han, Z.; Zhu, F.; Huang, J., Stability and stabilization of positive switched systems with mode-dependent average dwell time, Nonlinear Anal. Hybrid Syst., 9, 1, 42-55 (2013) · Zbl 1287.93070
[11] Chen, T.; Liu, X., \( \mu \) -stability of nonlinear positive systems with unbounded time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 28, 7, 1710-1715 (2017)
[12] Liu, S.; Xiang, Z., Exponential \(L_1\) output tracking control for positive switched linear systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 11, 118-128 (2014) · Zbl 1291.93272
[13] Xiao, J.; Hu, M.; Wang, Y.; Chen, W., Impulsive positive observers and dynamic output feedback stabilization of positive linear continuous systems, Internat. J. Robust Nonlinear Control, 27, 13, 2275-2291 (2016) · Zbl 1371.93165
[14] Liu, J.; Zhang, K.; Pang, G.; Wei, H., Controller synthesis for constrained discrete-time switched positive linear systems, Nonlinear Anal. Hybrid Syst., 19, 1-12 (2016) · Zbl 1329.93069
[15] Feng, J.; Lam, J.; Li, P.; Shu, Z., Decay rate constrained stabilization of positive systems using static output feedback, Internat. J. Robust Nonlinear Control, 21, 1, 44-54 (2011) · Zbl 1207.93080
[16] Rami, M. A., Solvability of static output-feedback stabilization for LTI positive systems, Systems Control Lett., 60, 9, 704-708 (2011) · Zbl 1226.93116
[17] Zhang, J.; Han, Z.; Zhu, F., Stochastic stability and stabilization of positive systems with Markovian jump parameters, Nonlinear Anal. Hybrid Syst., 12, 1, 147-155 (2014) · Zbl 1291.93323
[18] Liu, X., Stability analysis of a class of nonlinear positive switched systems with delays, Nonlinear Anal. Hybrid Syst., 16, 1-12 (2015) · Zbl 1310.93072
[19] Sun, Y., Stability analysis of positive switched systems via joint linear copositive Lyapunov functions, Nonlinear Anal. Hybrid Syst., 19, 146-152 (2016) · Zbl 1329.93120
[20] Benzaouia, A.; Oubah, R., Stability and stabilization by output feedback control of positive Takagi-CSugeno fuzzy discrete-time systems with multiple delays, Nonlinear Anal. Hybrid Syst., 11, 11, 154-170 (2014) · Zbl 1291.93174
[21] Hu, M.; Wang, Y.; Li, B.; Hu, X.; Wang, X., Impulsive stabilization of positive systems with time-varying delays, IEEE International Conference on Control & Automation, 741-746 (2017), IEEE
[22] Zhang, J.; Wang, Y.; Xiao, J.; Guan, Z., Stability analysis of impulsive positive systems, IFAC Proc. Vol., 47, 3, 5987-5991 (2014)
[23] Wang, Y.; Zhang, J.; Meng, L., Exponential stability of impulsive positive systems with mixed time-varying delays, IET Control Theory Appl., 8, 15, 1537-1542 (2014)
[24] Hu, M.; Xiao, J.; Xiao, R.; Chen, W., Impulsive effects on the stability and stabilization of positive systems with delays, J. Franklin Inst., 354, 10, 4034-4054 (2017) · Zbl 1367.93560
[25] Briat, C., Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems, Nonlinear Anal. Hybrid Syst., 24, 198-226 (2017) · Zbl 1377.93127
[26] Amato, F.; Ambrosino, R.; Ariola, M.; De Tommasi, G., Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties, Internat. J. Robust Nonlinear Control, 21, 10, 1080-1092 (2011) · Zbl 1225.93087
[27] Tan, F.; Zhou, B.; Duan, G. R., Finite-time stabilization of linear time-varying systems by piecewise constant feedback, 68, 277-285 (2016) · Zbl 1334.93144
[28] Weiss, L.; Infante, E. F., Finite time stability under perturbing forces and on product spaces, IEEE Trans. Automat. Control, 12, 1, 54-59 (2003)
[29] Garcia, G.; Tarbouriech, S.; Bernussou, J., Finite-time stabilization of linear time-varying continuous systems, IEEE Trans. Automat. Control, 54, 2, 364-369 (2009) · Zbl 1367.93060
[30] Du, H.; Lin, X.; Li, S., Finite-time boundedness and stabilization of switched linear systems, Kybernetika, 5, 5, 1365-1372 (2010)
[31] Amato, F.; Ariola, M.; Cosentino, C., Finite-time stability of linear time-varying systems: Analysis and controller design, IEEE Trans. Automat. Control, 55, 4, 1003-1008 (2010) · Zbl 1368.93457
[32] Amato, F.; Ambrosino, R.; Cosentino, C.; De Tommasi, G., Finite-time stabilization of impulsive dynamical linear systems, Nonlinear Anal. Hybrid Syst., 5, 1, 89-101 (2011) · Zbl 1371.93159
[33] Amato, F.; Tommasi, G. D.; Pironti, A., Input-output finite-time stabilization of impulsive linear systems: Necessary and sufficient conditions, Nonlinear Anal. Hybrid Syst., 19, 93-106 (2016) · Zbl 1329.93122
[34] Xu, J.; Sun, J., Finite-time stability of linear time-varying singular impulsive systems, IET Control Theory Appl., 4, 10, 2239-2244 (2010)
[35] Liu, L.; Sun, J., Finite-time stabilization of linear systems via impulsive control, Internat. J. Control, 81, 6, 905-909 (2008) · Zbl 1149.93338
[36] Amato, F.; Tommasi, G. D.; Pironti, A., Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49, 8, 2546-2550 (2013) · Zbl 1364.93737
[37] Tian, Y.; Cai, Y.; Sun, Y.; Gao, H., Finite-time stability for impulsive switched delay systems with nonlinear disturbances, J. Franklin Inst., 353, 14, 3578-3594 (2016) · Zbl 1347.93198
[38] Zhang, J.; Han, Z.; Hai, W., Robust finite-time stability and stabilisation of switched positive systems, IET Control Theory Appl., 8, 1, 67-75 (2014) · Zbl 1286.93134
[39] Chen, G.; Yang, Y., Finite-time stability of switched positive linear systems, Internat. J. Robust Nonlinear Control, 24, 1, 179-190 (2014) · Zbl 1278.93229
[40] Liu, T.; Wu, B.; Liu, L.; Wang, Y., Asynchronously finite-time control of discrete impulsive switched positive time-delay systems, J. Franklin Inst., 352, 10, 4503-4514 (2015) · Zbl 1395.93349
[41] Yu, T.; Zhong, Y.; Chen, T.; Chen, C., Finite-time stabilization of uncertain switched positive linear systems with time-varying delays, Discrete Dyn. Nat. Soc., 2015, 4, 1-9 (2015) · Zbl 1418.93226
[42] Qi, W.; Gao, X., Finite-time \(L_1\) control for positive Markovian jump systems with constant time delay and partly known transition rates, Trans. Inst. Meas. Control, 38, 3, 97-98 (2015)
[43] Liu, T.; Wu, B.; Liu, L.; Wang, Y., Finite-time stability of discrete switched singular positive systems, Circuits Syst. Signal Process., 36, 6, 2243-2255 (2017) · Zbl 1370.93163
[44] Liu, L.; Cao, X.; Fu, Z.; Song, S., Input-output finite-time control of positive switched systems with time-varying and distributed delays, J. Control Sci. Eng., 2017, 1-9 (2017) · Zbl 1400.93130
[45] Liu, J.; Lian, J.; Zhuang, Y., Output feedback \(L_1\) finite-time control of switched positive delayed systems with \(M D A D T\), Nonlinear Anal. Hybrid Syst., 15, 11-22 (2015) · Zbl 1301.93086
[46] Xiang, M.; Xiang, Z., Finite-time \(L_1\) control for positive switched linear systems with time-varying delay, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 3158-3166 (2013) · Zbl 1329.93086
[47] Chen, G.; Yang, Y., Finite-time stability of switched nonlinear time-varying systems via indefinite Lyapunov functions, Internat. J. Robust Nonlinear Control, 28, 5, 1901-1912 (2017) · Zbl 1390.93599
[48] Bhat, S. P., Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[49] Haddadb, W. M., Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Anal. Hybrid Syst., 2, 3, 832-845 (2008) · Zbl 1223.34089
[50] Rami, M. A.; Tadeo, F.; Helmke, U., Positive observers for linear positive systems, and their implications, Internat. J. Control, 84, 4, 716-725 (2011) · Zbl 1245.93026
[51] Lu, J.; Ho, D. W.C.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 7, 1215-1221 (2010) · Zbl 1194.93090
[52] Zhou, J.; Wu, Q., Exponential stability of impulsive delayed linear differential equations, IEEE Trans. Circuits Syst. II-Express Briefs, 56, 9, 744-748 (2009)
[53] J. Zhang, Y. Wang, J. Xiao, Z. Guan, Stability analysis of impulsive positive systems, in: 19th World Congress the International Federation of Automatic Control, 2014, pp. 24-29.; J. Zhang, Y. Wang, J. Xiao, Z. Guan, Stability analysis of impulsive positive systems, in: 19th World Congress the International Federation of Automatic Control, 2014, pp. 24-29.
[54] Horn, R. A., Topics in Matrix Analysis (1994), Cambridge University Press · Zbl 0801.15001
[55] Haddad, W. M.; Chellaboina, V. S.; Hui, Q., Nonnegative and Compartmental Dynamical Systems (2010), Princeton University Press · Zbl 1184.93001
[56] Jacques, J., Compartmental analysis in biology and medicine, Q. Rev. Biol., 4 (1972)
[57] Briat, C., Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: \(L_1\)-gain and \(L_\infty \)-gain characterization, Internat. J. Robust Nonlinear Control, 23, 17, 1932-1954 (2014) · Zbl 1278.93188
[58] Briat, C., Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints, Automatica, 74, 279-287 (2016) · Zbl 1348.93274
[59] Briat, C., Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints, Automatica, 49, 11, 3449-3457 (2013) · Zbl 1315.93058
[60] Briat, C., Theoretical and numerical comparisons of looped functionals and clock-dependent Lyapunov functions—The case of periodic and pseudo-periodic systems with impulses, Internat. J. Robust Nonlinear Control, 26, 10, 2232-2255 (2016) · Zbl 1342.93084
[61] Briat, C., A looped-functional approach for robust stability analysis of linear impulsive systems, Systems Control Lett., 61, 10, 980-988 (2012) · Zbl 1270.93084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.