Copula-based dependence between frequency and class in car insurance with excess zeros. (English) Zbl 1408.91110

Summary: A bonus-malus system calculates the premiums for car insurance based on the previous claim experience (class). In this paper, we propose a model that allows dependence between the claim frequency and the class occupied by the insured using a copula function. It also takes into account zero-excess phenomenon. The maximum likelihood method is employed to estimate the model parameters. A small simulation is performed to illustrate the proposed model and method.


91B30 Risk theory, insurance (MSC2010)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI


[1] Belzunce, F.; Ortega, E. M.; Pellerey, F.; Ruiz, J. M., Variability of total claim amounts under dependence between claims severity and number of events, 38, 460-468, (2006) · Zbl 1100.60005
[2] Borgan, O.; Hoem, J.; Norberg, R., A nonasymptotic criterion for the evaluation of automobile bonus systems, Scand. Actuar. J., 165-178, (1981) · Zbl 0476.62080
[3] Boucher, J. P.; Denuit, M.; Guillen, M., Risk classification for claim counts: a comparative analysis of various zero-inflated mixed Poisson and hurdle models, N. Am. Actuar. J., 11, 110-130, (2007)
[4] Boucher, J. P.; Denuit, M.; Guillen, M., Models of insurance claim counts with time dependence based on generalization of Poisson and negative binomial distributions, Variance, 2, 135-162, (2008)
[5] Boucher, J. P.; Guillen, M., A survey on models for panel count data with applications to insurance, Appl. Math., 103, 277-294, (2009) · Zbl 1180.62147
[6] Brouhns, N.; Guillen, M.; Denuit, M.; Pinquet, J., Bonus-malus scales in segmented tariffs with stochastic migration between segments, J. Risk Insur., 70, 577-599, (2003)
[7] Cameron, A. C.; Li, T.; Trivedi, P. K.; Zimmer, D. M., Modeling differences in counted outcomes using bivariate copula models: with application to mismeasured counts, Econom. J., 7, 566-584, (2004) · Zbl 1115.62329
[8] Denuit, M.; Marechal, X.; Pitrebois, S.; Walhin, J. F., Actuarial modelling of claim counts: risk classification, credibility and bonus-malus systems, (2007), John Wiley and Sons, Ltd. · Zbl 1168.91001
[9] Frees, E. W.; Valdez, E. A., Understanding relationships using copulas, N. Am. Actuar. J., 2, 1-25, (1998) · Zbl 1081.62564
[10] Gerber, H.; Jones, D., Credibility formulas of the updating type, Trans. Soc. Actuaries, 27, 31-52, (1975)
[11] Gilde, V.; Sundt, B., On bonus systems with credibility scales, Scand. Actuar. J., 13-22, (1989) · Zbl 0682.62085
[12] Hougaard, P., Analysis of multivariate survival analysis, (2000), Springer New York · Zbl 0962.62096
[13] Joe, H., Multivariate models and dependence concepts, (1997), Chapman and Hall London · Zbl 0990.62517
[14] Kaishev, V. K.; Dimitrova, D. S., Excess of loss reinsurance under joint survival optimality, Insurance Math. Econom., 39, 376-389, (2006) · Zbl 1151.91573
[15] Lemaire, J., Bonus-malus systems in automobile insurance, (1995), Kluwer Academic Publishers Boston
[16] Liebscher, E., Construction of asymmetric multivariate copulas, J. Multivariate Anal., 99, 2234-2250, (2008) · Zbl 1151.62043
[17] Nelsen, B., An introduction to copulas, (2006), Springer New York · Zbl 1152.62030
[18] Norberg, R., A credibility theory for automobile bonus systems, Scand. Actuar. J., 92-107, (1976) · Zbl 0337.62071
[19] Oakes, D., Bivariate survival models induced by frailties, J. Amer. Statist. Assoc., 84, 487-493, (1989) · Zbl 0677.62094
[20] Pitrebois, S.; Denuit, M.; Walhin, J. F., Multi-event bonus-malus scales, J. Risk Insur., 73, 517-528, (2006)
[21] Purcaru, O.; Denuit, M., Dependence in dynamic claim frequency credibility models, Astin Bull., 33, 23-40, (2003) · Zbl 1098.62567
[22] Sundt, B., Credibility estimators with geometric weights, Insurance Math. Econom., 7, 113-122, (1988)
[23] F. Vandenhende, P. Lambert, Modeling repeated ordered categorical data using copulas. discussion paper 00-25, Institute of Statistic, Universite Catholique de Louvain, Belgium, 2000.
[24] Yip, K. C.H.; Yau, K. K.W., On modeling claim frequency data in general insurance with extra zeros, Insurance Math. Econom., 36, 153-163, (2005) · Zbl 1070.62098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.