×

zbMATH — the first resource for mathematics

A direct Eulerian GRP scheme for relativistic hydrodynamics: One-dimensional case. (English) Zbl 1408.76597
Summary: The paper proposes a direct Eulerian generalized Riemann problem (GRP) scheme for one-dimensional relativistic hydrodynamics. It is an extension of the Eulerian GRP scheme for compressible non-relativistic hydrodynamics proposed in [M. Ben-Artzi et al., J. Comput. Phys. 218, No. 1, 19–43 (2006; Zbl 1158.76375)]. Two main ingredients, the Riemann invariant and the Rankine-Hugoniot jump condition, are directly used to resolve the local GRP in the Eulerian formulation, and thus the crucial and delicate Lagrangian treatment in the original GRP scheme [M. Ben-Artzi und J. Falcovitz, J. Comput. Phys. 55, 1–32 (1984; Zbl 0535.76070)] can be avoided. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed GRP scheme.

MSC:
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balsara, D.S., Riemann solver for relativistic hydrodynamics, J. comput. phys., 114, 284-297, (1994) · Zbl 0810.76062
[2] Ben-Artzi, M., The generalized Riemann problem for reactive flows, J. comput. phys., 81, 70-101, (1989) · Zbl 0668.76080
[3] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J. comput. phys., 55, 1-32, (1984) · Zbl 0535.76070
[4] Ben-Artzi, M.; Falcovitz, J., Generalized Riemann problems in computational fluid dynamics, (2003), Cambridge University Press · Zbl 1017.76001
[5] Ben-Artzi, M.; Li, J.Q., Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem, Numer. math., 106, 369-425, (2007) · Zbl 1123.65082
[6] Ben-Artzi, M.; Li, J.Q.; Warnecke, G., A direct Eulerian GRP scheme for compressible fluid flows, J. comput. phys., 218, 19-43, (2006) · Zbl 1158.76375
[7] Birman, A.; Har’el, N.Y.; Falcovitz, J.; Ben-Artzi, M.; Feldman, U., Operator-split computation of 3-d symmetric flow, Cfd j., 10, 37-43, (2001)
[8] Dai, W.; Woodward, P.R., An iterative Riemann solver for relativistic hydrodynamics, SIAM J. sci. statist. comput., 18, 982-995, (1997) · Zbl 0892.35008
[9] Dolezal, A.; Wong, S.S.M., Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, J. comput. phys., 120, 266-277, (1995) · Zbl 0840.76047
[10] Donat, R.; Font, J.A.; Ibáñez, J.M.; Marquina, A., A flux-split algorithm applied to relativistic flows, J. comput. phys., 146, 58-81, (1998) · Zbl 0930.76054
[11] Duncan, G.C.; Hughes, P.A., Simulations of relativistic extragalactic jets, Astrophys. J., 436, L119-L122, (1994)
[12] Eulderink, F.; Mellema, G., General relativistic hydrodynamics with a roe solver, Astron. astrophys. suppl., 110, 587-623, (1995)
[13] Falcovitz, J.; Alfandary, G.; Hanoch, G., A 2D conservation laws scheme for compressible flows with moving boundaries, J. comput. phys., 138, 83-102, (1997) · Zbl 0901.76044
[14] Falle, S.A.E.G.; Komissarov, S.S., An upwind numerical scheme for relativistic hydrodynamics with a general equation of state, Mon. not. roy. astron. soc., 278, 586-602, (1996)
[15] Han, E.; Li, J.Q.; Tang, H.Z., An adaptive GRP scheme for compressible fluid flows, J. comput. phys., 229, 1448-1466, (2010) · Zbl 1329.76205
[16] Han, E.; Li, J.Q.; Tang, H.Z., Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations, Commun. comput. phys., 10, 577-606, (2011) · Zbl 1373.76130
[17] He, P.; Tang, H.Z., An adaptive moving mesh method for two- dimensional relativistic hydrodynamics, Commun. comput. phys., (2011)
[18] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, (1987), Pergaman Press · Zbl 0146.22405
[19] Li, J.Q.; Chen, G.X., The generalized Riemann problem method for the shallow water equations with bottom topography, Int. J. numer. methods eng., 65, 834-862, (2006) · Zbl 1178.76249
[20] Martí, J.M.; Müller, E., The analytical solution of the Riemann problem in relativistic hydrodynamics, J. fluid mech., 258, 317-333, (1994) · Zbl 0806.76098
[21] Martí, J.M.; Müller, E., Extension of the piecewise parabolic method to one dimensional relativistic hydrodynamics, J. comput. phys., 123, 1-14, (1996) · Zbl 0839.76056
[22] Martí, J.M.; Müller, E., Numerical hydrodynamics in special relativity, Living rev. relativity, 6, 1-100, (2003) · Zbl 1068.83502
[23] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows. I. hydrodynamics, Mon. not. roy. astron. soc., 364, 1, 126-136, (2005)
[24] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J. suppl., 160, 1, 199-219, (2005)
[25] Misner, C.W.; Thorne, K.S.; Wheeler, J.A., Gravitation, (1973), W.H. Freeman and Company
[26] Schneider, V.; Katscher, U.; Rischke, D.H.; Waldhauser, B.; Maruhn, J.A.; Munz, C.D., New algorithms for ultra-relativistic numerical hydrodynamics, J. comput. phys., 105, 92-107, (1993) · Zbl 0779.76062
[27] Tang, H.Z.; Liu, T.G., A note on the conservative schemes for the Euler equations, J. comput. phys., 218, 451-459, (2006) · Zbl 1103.76041
[28] Tang, H.Z.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. numer. anal., 41, 487-515, (2003) · Zbl 1052.65079
[29] Tang, H.Z.; Warnecke, G., A runge – kutta discontinuous Galerkin method for the Euler equations, Comput. fluids, 34, 375-398, (2005) · Zbl 1098.76044
[30] Wilson, J.R., Numerical study of fluid flow in a Kerr space, Astrophys. J., 173, 431-438, (1972)
[31] Wilson, J.R., A numerical method for relativistic hydrodynamics, (), 423-446
[32] Zanna, L.D.; Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows I. hydrodynamics, Astron. astrophys., 390, 3, 1177-1186, (2002) · Zbl 1209.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.