×

Multiple-scale approximation of instabilities in unsteady boundary layers. (English) Zbl 1408.76189

Summary: A general procedure is developed to study the stability of unsteady boundary layers using complex-ray theory. The propagation of small disturbances is described by a high-frequency (optical) approximation similar to the one adopted for wave propagation in nonuniform media. The ray trajectories, formally defined as the characteristic lines of the eikonal equation, are described by a system of first-order differential equations. These lines are complex valued and provide the main contribution to the propagation of the wave (its Green’s function). As an application, we present the analysis of the flow past on an oscillating airfoil. The propagation of a harmonic disturbance inside the boundary layer is considered and some numerical transition-prediction results are discussed.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tani, T., Boundary-layer transition, Annu. Rev. Fluid Mech., 1, 169-196, (1969)
[2] Tani, I., History of boundary layer theory, Annu. Rev. Fluid Mech., 9, 87-111, (1977) · Zbl 0412.76032
[3] Gaster, M., On the effects of boundary-layer growth on flow stability, J. Fluid Mech., 66, 465-480, (1974) · Zbl 0296.76021
[4] Saric, W. S.; Nayfeh, A. H., Nonparallel stability of boundary-layer flows, Phys. Fluids, 18, 945, (1975) · Zbl 0309.76033
[5] Cebeci, T.; Stewartson, K., On stability and transition in three-dimensional flows, AIAA J., 18, 398-405, (1980) · Zbl 0463.76051
[6] Herbert, T.; Bertolotti, F. P., Stability analysis of nonparallel boundary layers, Bull. Amer. Phys. Soc., 32, 2079, (1987)
[7] P. De Matteis, R. Donelli, P. Luchini, Application of the ray-tracing theory to the stability analysis of three-dimensional incompressible boundary layers, in: XIII AIDAA Conference, Rome, 1995.
[8] Budden, K. G.; Terry, P. D., Radio ray tracing in complex space, Proc. R. Soc. Lond. Ser. A, 321, 275-301, (1970)
[9] Jones, R. M., Ray theory for lossy media, Radio Sci., 5, 793-801, (1970)
[10] Keller, J. B.; Streifer, W., Complex rays with an application to Gaussian beams, J. Opt. Soc. Amer., 61, 40-43, (1962)
[11] Keller, J. B.; Streifer, W., Surface wave excitation and propagation, J. Appl. Phys., 31, 1039-1046, (1960)
[12] Itoh, N., Linear stability theory for wave-packet disturbances in parallel and nearly parallel flows, (Eppler, R.; Fasel, H., Proceedings IUTAM Symposium on Laminar-Turbulent Transition, (1980), Springer) · Zbl 0463.76048
[13] Whitham, G. B., Linear and nonlinear waves, (1974), Wiley · Zbl 0373.76001
[14] Choudhari, M.; Street, C. L., A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions, Phys. Fluids, 4, 2495-2514, (1992) · Zbl 0762.76024
[15] Crouch, J. D., Localized receptivity of boundary layers, Phys. Fluids, 4, 1408-1414, (1992) · Zbl 0825.76159
[16] Zuccher, S., Localized receptivity of boundary layers, (2002), (Ph.D. thesis)
[17] Gréa, B. J., Application de la théorie des rayons complexes á l’analyse et au contrôle des instabilités de couche limite, (2005), IMFT, (Ph.D. thesis)
[18] Hall, P., The linear stability of flat Stokes layers, Proc. R. Soc. Lond. Ser. A, 359, 151-166, (1978) · Zbl 0373.76045
[19] Merkli, P.; Thomann, H., Transition to turbulence in oscillating pipe flow, J. Fluid Mech., 68, 567-576, (1975)
[20] Vittori, G.; Verzicco, R., Direct simulation of transition in an oscillatory boundary layer, J. Fluid Mech., 371, 207-232, (1998) · Zbl 0918.76015
[21] Bender, C. M.; Orszag, S. A., Advanced mathematical methods for scientists and engineers, (1987), Springer New York
[22] Goldstein, H., Classical mechanics, (1957), Addison-Wesley P.C.
[23] Smirnov, V., Course on higher mathematics. vol. 4, (1974), Nauka Moscow
[24] Bühler, O., Waves and mean flows, (2009), Cambridge University Press · Zbl 1180.86001
[25] Talman, R., Geometric mechanics: toward a unification of classical physics, (2007), Wiley · Zbl 1176.70001
[26] Ames, W. F., Nonlinear partial differential equations in engineering, vol. 1, (1967), Elsevier · Zbl 0155.00202
[27] Blennerhasset, P. J.; Bassom, A. P., The linear stability of flat Stokes layers, J. Fluid Mech., 464, 393-410, (2002) · Zbl 1022.76015
[28] Blennerhasset, P. J.; Bassom, A. P., A note on the linear stability of a two-dimensional Stokes layer, Quart. J. Mech. Appl. Math., 60, 391-396, (2007) · Zbl 1119.76024
[29] Blennerhasset, P. J.; Bassom, A. P., On the linear stability of Stokes layers, Phil. Trans. R. Soc. A, 366, 2685-2697, (2008) · Zbl 1153.76360
[30] Luo, J.; Wu, X., On the linear instability of a finite Stokes layer: istantaneous versus Floquet modes, J. Fluid Mech., 22, 054106, (2010) · Zbl 1190.76082
[31] Gitin, A. V., The Legendre transformations in Hamiltonian optics, J. Eur. Opt. Soc., 5, 10022, (2010)
[32] Birnbaum, W., Das ebene problem des schlagenden flügels, ZAMM Z. Angew. Math. Mech., 4, 277-292, (1924) · JFM 50.0562.02
[33] Milne-Thomson, L. M., Theoretical aerodynamics, (1958), Dover New York · Zbl 0029.28204
[34] Saric, W. S.; Reed, H. L.; White, E. B., Stability and transition of three-dimensional boundary layers, Annu. Rev. Fluid Mech., 35, 413-440, (2003) · Zbl 1039.76018
[35] Smith, A. M.O.; Gamberoni, N., Transition, pressure gradient and stability theory, Douglas aircraft report ES-26388, (1956)
[36] Cebeci, T.; Platzer, M.; Chen, H.; Chang, K.; Shao, J., Analysis of low-speed unsteady airfoil flows, (2005), Springer
[37] Phillips, J. H.; Ackerberg, R. C., A numerical method for integrating the unsteady boundary-layer equations when there are regions of backflow, J. Fluid Mech., 58, 561-579, (1973) · Zbl 0265.76046
[38] Luchini, P.; Bottaro, A., Linear stability and receptivity analyses of the Stokes layer produced by an impulsively started plate, Phys. Fluids, 13, 1668-1678, (2001) · Zbl 1184.76335
[39] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes in C: the art of scientific computing, (1992), Cambridge Univ. Press New York · Zbl 0845.65001
[40] Giannetti, F.; Luchini, P., Leading-edge receptivity by adjoint methods, J. Fluid Mech., 547, 21-53, (2006) · Zbl 1138.76347
[41] Leishman, J. G., Principles of helicopter aerodynamics, (2006), Cambridge University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.