zbMATH — the first resource for mathematics

Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods. (English) Zbl 1408.65077
Summary: We present a new hybrid conservative remapping algorithm for multimaterial Arbitrary Lagrangian-Eulerian (ALE) methods. The hybrid remapping is performed in two steps. In the first step, only nodes of the grid that lie inside subdomains occupied by single materials are moved. At this stage, computationally cheap swept-region remapping is used. In the second step, nodes that are vertices of mixed cells (cells containing several materials) and vertices of some cells in a buffer zone around mixed cells are moved. At this stage, intersection-based remapping is used. The hybrid algorithm results in computational expense that lies between swept-region and intersection-based remapping We demonstrate the performance of our new method for both structured and unstructured polygonal grids in two dimensions, as well as for cell-centered and staggered discretizations.

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX Cite
Full Text: DOI
[1] Ahn, H.T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes, J. comput. phys., 226, 2096-2132, (2007) · Zbl 1388.76232
[2] P. Anninos, Split and Unsplit Volume of Fluid Methods for Interface Advection, Technical Report UCRL-JC-139169, Lawrence Livermore National Laboratory, 2000.
[3] P. Anninos, Kull ALE: I, Unstructured Mesh Advection, Interface Capturing, and Multiphase 2T RHD with Material Interface, Technical Report, UCRL-ID-147297-PT-1, Lawrence Livermore National Laboratory, 2002.
[4] P. Anninos, Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstrcutured Meshes, Technical Report UCRL-JC-150129, Lawrence Livermore National Laboratory, 2002.
[5] Bell, J.B.; Dawson, C.N.; Shubin, G.R., An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions, J. comput. phys., 74, 1-24, (1988) · Zbl 0684.65088
[6] Benson, D.J., An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. methods appl. mech. eng., 72, 305-350, (1989) · Zbl 0675.73037
[7] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. methods appl. mech. eng., 99, 235-394, (1992) · Zbl 0763.73052
[8] Benson, D.J., Momentum advection on a staggered mesh, J. comput. phys., 100, 143-162, (1992) · Zbl 0758.76038
[9] Benson, D.J.; Souli, M., Arbitrary Lagrangian Eulerian and fluid-structure interaction: numerical simulation, (2010), Wiley-ISTE
[10] M. Berndt, J. Breil, S. Galera, M. Kucharik, P.H. Maire, M. Shashkov, Two-step Hybrid Remapping (conservative interpolation) for Multimaterial Arbitrary Lagrangian-Eulerian Methods, Technical report, Los Alamos National Laboratory Report LAUR-10-05438, 2010. <http://cnls.lanl.gov/∼shashkov>. · Zbl 1408.65077
[11] Bowers, K.J.; Albright, B.J.; Yin, L.; Bergen, B.; Kwan, T.J.T., Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation, Phys. plasmas, 15, 5, (2008), 055703-1-1
[12] Bowers, R.L.; Wilson, J.R., Numerical modeling in applied physics and astrophysics, (1991), Jones & Barlett Publishers · Zbl 0786.76001
[13] Castor, J.I., Radiation hyddrodynamics, (2004), Cambridge University Press
[14] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. comput. phys., 87, 171-200, (1990) · Zbl 0694.65041
[15] Du, Q.; Faber, V.; Gunzburger, M., Centroidal Voronoi tesselations: applications and algorithms, SIAM rev., 41, 637-676, (1999) · Zbl 0983.65021
[16] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. comput. phys., 227, 5361-5384, (2008) · Zbl 1220.76048
[17] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of the flow problems on the moving grids, J. comput. phys., 174, 669-694, (2001) · Zbl 1157.76372
[18] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. comput. phys., 229, 5755-5787, (2010) · Zbl 1346.76105
[19] Grandy, G., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. comput. phys., 148, 2, 133-466, (1999) · Zbl 0932.76073
[20] Hirt, C.W.; Amsden, A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[21] P. Hoch, An arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows, HAL : hal-00366858, version 1, 2009. <http://hal.archives-ouvertes.fr/docs/00/36/68/58/PDF/ale2d.pdf>.
[22] P. Hoch, Mesh quality and conservative projection in Lagrangian compressible hydrodynamic, in: Conference on Numerical Methods for Multi-material Fluid Flows; Czech Technical University in Prague on September 10-14, 2007; <http://www-troja.fjfi.cvut.cz/∼multimat07/presentations/tuesday/Rebourcet_Hoch.pdf>.
[23] P. Hoch, Mesh quality and conservative projection in Lagrangian compressible hydrodynamic, in: Conference on Numerical Methods for Multi-material fluid flows; Czech Technical University in Prague on September 10-14, 2007; <http://www-troja.fjfi.cvut.cz/∼multimat07/presentations/tuesday/Rebourcet_Hoch.pdf>.
[24] Kershaw, D.S.; Prasad, M.K.; Shaw, M.J.; Milovich, J.L., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. methods appl. mech. eng., 158, 81-116, (1998) · Zbl 0954.76045
[25] Kjellgren, P.; Hyvarien, J., An arbitrary lagrangian – eulerian finite element method, Comput. mech., 21, 81-90, (1998) · Zbl 0911.76036
[26] Knupp, P.; Margolin, L.G.; Shashkov, M., Reference jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods, J. comput. phys., 176, 93-128, (2002) · Zbl 1120.76340
[27] M. Kucharik, J. Breil, S. Galera, P.-H. Maire, M. Berndt, M. Shashkov, Hybrid remap for multi-material ALE, Computers & Fluids, 2010, doi:10.1016/j.compfluid.2010.08.004, in press. · Zbl 1433.76133
[28] Kucharik, M.; Garimella, R.; Schofield, S.; Shashkov, M., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. comput. phys., 229, 2432-2452, (2010) · Zbl 1423.76343
[29] M. Kucharik, M. Shashkov, Multi-material remap for staggered ALE in 2D, in: Conference on Numerical methods for multi-material fluids and Structures; Pavia, Italy, September 21-25, 2009; <http://www.eucentre.it/index.php/content/view/1287/415/lang,it/kucharik.pdf>.
[30] M. Kucharik, M. Shashkov, Conservative multi-material remap for staggered discretization, 2010, in preparation. · Zbl 1349.76493
[31] Kucharik, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping methods, J. comput. phys., 188, 462-471, (2003) · Zbl 1022.65009
[32] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modeling merging and fragmentation in multiphase flows with SURFER, J. comput. phys., 113, 134-147, (1994) · Zbl 0809.76064
[33] Leveque, R.J., High-resolution conservative algorithms for advection in incompressible flows, SIAM J. numer. anal., 33, 627-665, (1996) · Zbl 0852.76057
[34] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge, 2002. · Zbl 1010.65040
[35] Leveque, R.J.; Langseth, O., A wave propagation method for three-dimensional hyperbolic conservation laws, J. comput. phys., 165, 126-166, (2000) · Zbl 0967.65095
[36] Loubère, R.; Shashkov, M., A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian – eulerian methods, J. comput. phys., 204, 23, 155-160, (2004)
[37] Mair, H.U., Review: hydrocodes for structural response to underwater explosions, Shock vibr., 6, 81-96, (1999)
[38] Margolin, L.G., Introduction to “an arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 135, 198-202, (1997) · Zbl 0938.76067
[39] Margolin, L.G.; Shashkov, M., Second-order sign-preserving conservative interpolation (remapping) on general grids, J. comput. phys., 184, 1, 266-298, (2003) · Zbl 1016.65004
[40] Murphy, J.W.; Burrows, A., BETHE-HYDRO: an arbitrary lagrangian – eulerian multidimensional hydrodynamics code for astrophysical simulations, Astrophys. J. suppl. ser., 179, 209-241, (2008)
[41] Peery, J.S.; Carroll, D.E., Multi-material ALE methods in unstructured grids, Comput. methods appl. mech. eng., 187, 591-619, (2000) · Zbl 0980.74068
[42] D. Post, Codes Written by the National and International Computational Physics Community, Technical Report LA-UR-02-6284, Los Alamos National Laboratory, 2002. <http://www.highproductivity.org/026284coverCEEGodes.pdf>.
[43] Quirk, J.; Karni, S., On the dynamics of a shock-bubble interaction, J. fluid mech., 318, 129-163, (1996) · Zbl 0877.76046
[44] Rider, W.J.; Kothe, D.B., Reconstruction volume tracking, J. comput. phys., 141, 112-152, (1998) · Zbl 0933.76069
[45] Rudman, M., Volume tracking methods for interfacial flow calculations, Int. J. numer. methods fluid, 24, 671-691, (1997) · Zbl 0889.76069
[46] J. Saltzman, Monotonic Difference Schemes for the Linear Advection Equation in Two and Three Dimensions, Technical report, Los Alamos National Laboratory Report LAUR-87-2479, 1987.
[47] Saltzman, J., An unsplit 3D upwind method for hyperbolic conservation laws, J. comput. phys., 115, 153-168, (1994) · Zbl 0813.65111
[48] Shashkov, M., Closure models for multimaterial cells in arbitrary lagrangian – eulerian hydrocodes, Int. J. numer. methods fluid, 56, 1497-1504, (2007) · Zbl 1151.76026
[49] Torres, D.J.; Trujillo, M.F., KIVA-4: an unstructured ale code for compressible gas flow with sprays, J. comput. phys., 219, 943-975, (2006) · Zbl 1330.76105
[50] Winslow, A., Numerical solution of the quasilinear Poisson equations in a nonuniform triangle mesh, J. comput. phys., 1, 149-172, (1966) · Zbl 0254.65069
[51] J.G Wohlbier, R.B. Lowrie, B. Bergen, Acceleration of a multi-material hydrodynamics algorithm on roadrunner, in: Conference on Numerical Methods for Multi-material Fluids and Structures; Pavia, Italy, September 21-25, 2009, <http://www.eucentre.it/index.php/content/view/1287/415/lang,it/wohlbier.pdf>.
[52] Woodward, P.R.; Jayaraj, J.; Lin, P.-H.; Dai, W., First experience of compressible gas dynamics simulation on the los alamos roadrunner machine, Concurency comput.: practice exp., 21, 2160-2175, (2009)
[53] Zimmerman, G.; Kershaw, D.; Bailey, D.; Harte, J., LASNEX code for inertial confinement fusion, J. opt. soc. am., 68, 549, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.