×

zbMATH — the first resource for mathematics

Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy. (English) Zbl 1408.37123

MSC:
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
14H42 Theta functions and curves; Schottky problem
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
14H70 Relationships between algebraic curves and integrable systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belov, A. A.; Chaltikian, K. A., Lattice analogues of \(W\)-algebras and classical integrable equations, Phys. Lett. B., 309, 268-274, (1993) · Zbl 0905.17032
[2] Hikami, K.; Inoue, R., Classical lattice \(W\) algebras and integrable systems, J. Phys. A: Math. Gen., 30, 6911-6924, (1997) · Zbl 1042.17510
[3] Hu, X. B.; Zhu, Z. N.; Bäcklund, A., Transformation and nonlinear superposition formula for the Belov-Chaltikian lattice, J. Phys. A: Math. Gen., 31, 4755-4761, (1998) · Zbl 0952.37051
[4] Sahadevan, R.; Khousalya, S., Similarity reduction, generalized symmetries and integrability of Belov-Chaltikian and blaszak-marciniak lattice equations, J. Math. Phys., 42, 3854-3870, (2001) · Zbl 1005.37033
[5] Sahadevan, R.; Khousalya, S., Belov-Chaltikian and blaszak-marciniak lattice equations: recursion operators and factorization, J. Math. Phys., 44, 882-898, (2003) · Zbl 1061.37051
[6] Sahadevan, R.; Khousalya, S., Master symmetries for Volterra equation, Belov-Chaltikian and blaszak-marciniak lattice equations, J. Math. Anal. Appl., 280, 241-251, (2003) · Zbl 1038.37060
[7] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons: The Inverse Scattering Method, (1984), Consultants Bureau, New York · Zbl 0598.35002
[8] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations, (1994), Springer, Berlin · Zbl 0809.35001
[9] Krichever, I. M., Algebraic-geometric construction of the zaharov-sabat equations and their periodic solutions, Dokl. Akad. Nauk SSSR, 227, 394-397, (1976) · Zbl 0361.35007
[10] Dubrovin, B. A., Matrix finite-gap operators, Revs. Sci. Tech., 23, 33-78, (1983)
[11] Date, E.; Tanaka, S., Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., 59, 107-125, (1976)
[12] Bulla, W.; Gesztesy, F.; Holden, H.; Teschl, G., Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-Van moerbeke hierarchies, Mem. Amer. Math. Soc., 135, 1-79, (1998) · Zbl 0906.35099
[13] Ma, Y. C.; Ablowitz, M. J., The periodic cubic Schrödinger equation, Stud. Appl. Math., 65, 113-158, (1981) · Zbl 0493.35032
[14] Previato, E., Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation, Duke Math. J., 52, 329-377, (1985) · Zbl 0578.35086
[15] Smirnov, A. O., Real finite-gap regular solutions of the Kaup-Boussinesq equation, Theor. Math. Phys., 66, 19-31, (1986) · Zbl 0621.35091
[16] Alber, S. J., On finite-zone solutions of relativistic Toda lattices, Lett. Math. Phys., 17, 149-155, (1989) · Zbl 0696.58021
[17] Gesztesy, F.; Ratneseelan, R., An alternative approach to algebro-geometric solutions of the AKNS hierarchy, Rev. Math. Phys., 10, 345-391, (1998) · Zbl 0974.35107
[18] Gesztesy, F.; Holden, H., Algebro-geometric solutions of the Camassa-Holm hierarchy, Rev. Mat. Iberoamericana, 19, 73-142, (2003) · Zbl 1029.37049
[19] Geronimo, J. S.; Gesztesy, F.; Holden, H., Algebro-geometric solutions of the Baxter-szegö difference equation, Comm. Math. Phys., 258, 149-177, (2005) · Zbl 1080.37075
[20] Geng, X. G.; Cao, C. W., Decomposition of the \((2 + 1)\)-dimensional gardner equation and its quasi-periodic solutions, Nonlinearity, 14, 1433-1452, (2001) · Zbl 1160.37405
[21] Geng, X. G.; Dai, H. H.; Zhu, J. Y., Decomposition of the discrete Ablowitz-Ladik hierarchy, Stud. Appl. Math., 118, 281-312, (2007)
[22] Airault, H.; McKean, H. P.; Moser, J., Rational and elliptic solutions of the Korteweg-de Vries equation a related many-body problem, Commun. Pure Appl. Math., 30, 95-148, (1977) · Zbl 0338.35024
[23] McKean, H. P.; Grmela, M.; Marsden, J. E., Global Analysis, 755, Integrable systems and algebraic curves, 83-200, (1979), Springer, Berlin
[24] Matveev, V. B.; Smirnov, A. O., On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations, Lett. Math. Phys., 14, 25-31, (1987) · Zbl 0641.35061
[25] Matveev, V. B.; Smirnov, A. O., Simplest trigonal solutions of the Boussinesq and Kadomtsev-Petviashvili equations, Sov. Phys. Dokl., 32, 202-204, (1987) · Zbl 0644.35082
[26] Smirnov, A. O., A matrix analogue of appell’s theorem and reductions of multidimensional Riemann theta-functions, Math. USSR Sbornik, 61, 379-388, (1988) · Zbl 0677.33002
[27] Previato, E.; Harnad, J.; Marsden, J. E., Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, The Calogero-Moser-Krichever system and elliptic Boussinesq solitons, 57-67, (1990), CRM, Monreal
[28] Matveev, V. B.; Smirnov, A. O., Symmetric reductions of the Riemann-function and some of their applications to the Schrödinger and Boussinesq equations, Amer. Math. Soc. Transl., 157, 227-237, (1993) · Zbl 0807.35137
[29] Previato, E.; Verdier, J. L.; Ramanan, S.; Beauville, A., Proc. Indo-French Conf. on Geometry, Boussinesq elliptic solitons: The cyclic case, 173-185, (1993), Hindustan Book Agency, Delhi · Zbl 0844.14016
[30] Previato, E., Monodromy of Boussinesq elliptic operators, Acta Appl. Math., 36, 49-55, (1994) · Zbl 0837.33012
[31] Brezhnev, Y. V., Finite-band potentials with trigonal curves, Theoret. Math. Phys., 133, 1657-1662, (2002) · Zbl 1087.34561
[32] Baldwin, S.; Eilbeck, J. C.; Gibbons, J.; Ô nishi, Y., Abelian functions for cyclic trigonal curves of genus 4, J. Geom. Phys., 58, 450-467, (2008) · Zbl 1211.37082
[33] Eilbeck, J. C.; Enolski, V. Z.; Matsutani, S.; Ô nishi, Y.; Previato, E., Abelian functions for purely trigonal curves of genus three, Int. Math. Res. Not. IMRN, 2008, 38, (2008) · Zbl 1210.14032
[34] Elgin, J. N.; Enolski, V. Z.; Its, A. R., Effective integration of the nonlinear vector Schrödinger equation, Phys. D, 225, 127-152, (2007) · Zbl 1121.35129
[35] Dai, H. H.; Geng, X. G.; Fan, E. G., Quasi-periodic solutions of soliton equations associated with third-order special problems through reduction, Int. J. Appl. Math. Appl., 1, 50-59, (2008) · Zbl 1152.35100
[36] Dickson, R.; Gesztesy, F.; Unterkofler, K., A new approach to the Boussinesq hierarchy, Math. Nachr., 198, 51-108, (1999) · Zbl 0978.35049
[37] Dickson, R.; Gesztesy, F.; Unterkofler, K., Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11, 823-879, (1999) · Zbl 0971.35065
[38] Geng, X. G.; Wu, L. H.; He, G. L., Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions, Phys. D, 240, 1262-1288, (2011) · Zbl 1223.37093
[39] Geng, X. G.; Wu, L. H.; He, G. L., Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy, J. Nonlinear Sci., 23, 527-555, (2013) · Zbl 1309.37070
[40] Geng, X. G.; Zhai, Y. Y.; Dai, H. H., Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263, 123-153, (2014) · Zbl 1304.37046
[41] Griffiths, P.; Harris, J., Principles of Algebraic Geometry, (1994), Wiley, New York · Zbl 0836.14001
[42] Mumford, D., Tata Lectures on Theta II, (1984), Birkhäuser, Boston
[43] Farkas, H. M.; Kra, I., Riemann Surfaces, (1992), Springer, New York · Zbl 0764.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.