×

zbMATH — the first resource for mathematics

Intuitionistic epistemic logic. (English) Zbl 1408.03004
Summary: We outline an intuitionistic view of knowledge which maintains the original Brouwer-Heyting-Kolmogorov semantics for intuitionism and is consistent with the well-known approach that intuitionistic knowledge be regarded as the result of verification. We argue that on this view coreflection \(A\to\mathbf{K}A\) is valid and the factivity of knowledge holds in the form \(\mathbf{K}A\to\neg\neg A\) ‘known propositions cannot be false’.{
}We show that the traditional form of factivity \(\mathbf{K}A\to A\) is a distinctly classical principle which, like tertium non datur \(A\vee\neg A\), does not hold intuitionistically, but, along with the whole of classical epistemic logic, is intuitionistically valid in its double negation form \(\neg\neg(\mathbf{K}A\to A)\).{
}Within the intuitionistic epistemic framework the knowability paradox is resolved in a constructive manner. We argue that this paradox is the result of an unwarranted classical reading of constructive principles and as such does not have the consequences for constructive foundations traditionally attributed it.

MSC:
03B20 Subsystems of classical logic (including intuitionistic logic)
03B42 Logics of knowledge and belief (including belief change)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1007/BF00484985
[2] From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920’s (1998)
[3] DOI: 10.2307/2266895 · Zbl 0067.00202
[4] DOI: 10.1007/978-3-319-27683-0_14 · Zbl 06751239
[5] Logic, Methodology and Philosohy of Science: Proceedings of the 1960 International Congress pp 198– (1962)
[6] Computer Science Logic pp 570– (2001)
[7] From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 pp 415– (1925)
[8] Logical Investigations (1901)
[9] The Stanford Encyclopedia of Philosophy (2014)
[10] Logic for Programming, Artificial Intelligence, and Reasoning pp 272– (2010)
[11] Grundlagen der Mathematik II (Grundlehren der mathematischen Wissenschaften) (1932)
[12] Intuitionism: An Introduction 41 (1966)
[13] Philosophy of Mathematics, Selected Readings pp 42– (1964) · Zbl 0144.24217
[14] DOI: 10.1007/s12136-012-0163-3
[15] DOI: 10.1111/j.1933-1592.2010.00338.x
[16] Proceedings of the Aristotelian Society pp 153– (1979)
[17] Collected Works 1 pp 301– (1933)
[18] The Theory of Knowledge pp 125– (1963)
[19] The Foundations of Arithmetic: A Logical-Mathematical Investigation into the Concept of Number (1884)
[20] Skepticism in Renaissance and Post-Renaissance Thought: New Interpretations (2004)
[21] Realism, Meaning, and Truth (1993)
[22] The Proceedings of the Twentieth World Congress of Philosophy 2000 pp 217– (2000)
[23] DOI: 10.1007/978-94-017-3465-3_4
[24] DOI: 10.2307/2271594 · Zbl 0943.03599
[25] DOI: 10.1007/BF00763512
[26] Many-Dimensional Modal Logics: Theory and Applications (2003) · Zbl 1051.03001
[27] Journal of Philosophical Logic 21 pp 63– (1992)
[28] DOI: 10.1093/analys/61.1.1
[29] DOI: 10.2307/2219707
[30] DOI: 10.1093/analys/42.4.203
[31] Advances in Modal Logic 8 pp 483– (2010)
[32] Constructivism in Mathematics An Introduction 121 (1988) · Zbl 0653.03040
[33] Theoria 64 pp 122– (1998)
[34] The Logical Basis of Metaphysics (1991)
[35] Naturalistic Realism and the Anti-Realist Challenge (2004)
[36] The Seas of Language pp 106– (1979)
[37] Elements of Intuitionism (1977) · Zbl 0358.02032
[38] The Seas of Language pp 34– (1976)
[39] Constructivism in Mathematics An Introduction 121 (1988) · Zbl 0653.03040
[40] Truth and Other Enigmas pp 215– (1973)
[41] Publications de L’Institute Mathématique (Beograd)(NS) 35 pp 15– (1984)
[42] DOI: 10.1093/acprof:oso/9780199285495.003.0015
[43] The Philosophical Writings of Descartes II. pp 3– (1642)
[44] The Taming of the True (1997) · Zbl 0929.03001
[45] DOI: 10.1038/scientificamerican0669-63
[46] Handbook of Philosophical Logic 9 pp 165– (2002) · Zbl 1055.03002
[47] DOI: 10.1007/s11229-004-6296-1 · Zbl 1101.03036
[48] New Essays on the Knowability Paradox (2009) · Zbl 1242.03011
[49] Synthese 176 pp 177– (2009)
[50] DOI: 10.1007/BF02379783
[51] DOI: 10.1007/s11229-004-6270-y · Zbl 1103.03005
[52] Handbook of Proof Theory pp 683– (1998)
[53] IEEE Spectrum 33 pp 61– (1996)
[54] Modal Logic (1997) · Zbl 0871.03007
[55] DOI: 10.2307/3129784
[56] Logic and Structure (2004)
[57] DOI: 10.1111/j.1741-2005.1970.tb02053.x
[58] Handbook of Philosophical Logic 5 pp 1– (2002) · Zbl 1055.03002
[59] Truth and Other Enigmas pp 145– (1963)
[60] DOI: 10.1007/s11229-004-6272-9 · Zbl 1103.03304
[61] Handbook of Proof Theory pp 1– (1998) · Zbl 0898.03001
[62] DOI: 10.1007/978-3-319-27683-0_22 · Zbl 06751247
[63] Brouwer’s Cambridge Lectures on Intuitionism (1981) · Zbl 0476.03056
[64] DOI: 10.1007/978-3-662-48561-3_24 · Zbl 06521586
[65] The Stanford Encyclopedia of Philosophy (2009)
[66] DOI: 10.1007/s10992-011-9207-1 · Zbl 1280.03020
[67] DOI: 10.1007/s11229-004-6295-2 · Zbl 1103.03055
[68] DOI: 10.1093/0195148770.003.0022
[69] Truth in Perspective, Recent Issues in Logic, Representation and Ontology pp 23– (1998)
[70] Truth in Mathematics pp 41– (1998)
[71] Truth and Objectivity (1994)
[72] Theoria 64 pp 283– (1998)
[73] Theoria 64 pp 293– (1998)
[74] Theoria 64 pp 318– (1998)
[75] Logic and Philosophy pp 1– (1980)
[76] DOI: 10.1093/analys/50.3.182
[77] DOI: 10.1007/s11098-009-9349-y
[78] DOI: 10.1007/s11229-004-6269-4 · Zbl 1112.03004
[79] DOI: 10.1007/BF00763507
[80] Truth in Mathematics pp 105– (1998)
[81] Atti del Congresso Nuovi problemi della logica e della filosofia della scienza pp 141– (1990)
[82] Studia Logica, An International Journal for Symbolic Logic 44 pp 39– (1985)
[83] DOI: 10.1007/BF02429840 · Zbl 0634.03014
[84] Synthese 190 (2012)
[85] The Stanford Encyclopedia of Philosophy (2012)
[86] Handbook of Philosophical Logic 13 pp 189– (2005)
[87] DOI: 10.1017/S1755020308090060 · Zbl 1205.03027
[88] DOI: 10.2307/2687821 · Zbl 0980.03059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.