zbMATH — the first resource for mathematics

A mechanism accounting for independence on starting length of tension increase in ramp stretches of active skeletal muscle at short half-sarcomere lengths. (English) Zbl 1407.92022
Summary: Based on previous experimental results of independence on starting length of the tension gradient in constant-velocity stretches of active skeletal muscle at muscle lengths including the ascending limb and the plateau of the tension-length relation, a possible physiological mechanism determining the tension increase in lengthening active muscle is discussed. Considering the sliding filament theory, it is suggested that the tension-length relation of a half-sarcomere in lengthening contractions is different from that in isometric contractions. The assumed mechanism predicts, among others, that the thick filament retains its shortened length in lengthening contractions starting from a half-sarcomere length where this filament is compressed. An example model is implemented and checked with simulations.

92C10 Biomechanics
92C30 Physiology (general)
Full Text: DOI
[1] Abbott, B.C.; Aubert, X.M., The force exerted by active striated muscle during and after change of length, J. physiol., 117, 1, 77-86, (1952)
[2] Edman, K.A.; Elzinga, G.; Noble, M.I., Residual force enhancement after stretch of contracting frog single muscle fibers, J. gen. physiol., 80, 5, 769-784, (1982)
[3] Edman, K.A.; Reggiani, C., The sarcomere length-tension relation determined in short segments of intact muscle fibres of the frog, J. physiol., 385, 709-732, (1987)
[4] Edman, K.A.P., Contractile properties of mouse single muscle fibers, a comparison with Amphibian muscle fibers, J. exp. biol., 208, Pt 10, 1905-1913, (2005)
[5] Elmubarak, M.H.; Ranatunga, K.W., Temperature sensitivity of tension development in a fast-twitch muscle of the rat, Muscle nerve, 7, 4, 298-303, (1984)
[6] Gordon, A.M.; Huxley, A.F.; Julian, F.J., The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. physiol., 184, 1, 170-192, (1966)
[7] Herzog, W., Force enhancement following stretch of activated muscle: critical review and proposal for mechanisms, Med. biol. eng. comput., 43, 2, 173-180, (2005)
[8] Higuchi, H., Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle, J. biochem., 111, 3, 291-295, (1992)
[9] Hill, A.V., The heat of shortening and the dynamic constants of muscle, Proc. R. soc. London B biol. sci., 126, 136-195, (1938)
[10] Hindmarsh, A.C., Two new initial value ordinary differential equation solvers, ACM SIGNUM newsletter, 15, 10-11, (1980)
[11] Julian, F.J.; Morgan, D.L., The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres, J. physiol., 293, 379-392, (1979)
[12] Kellermayer, M.S.; Granzier, H.L., Calcium-dependent inhibition of in vitro thin-filament motility by native titin, FEBS lett., 380, 281-286, (1996)
[13] Kulke, M.; Fujita-Becker, S.; Rostkova, E.; Neagoe, C.; Labeit, D.; Manstein, D.J.; Gautel, M.; Linke, W.A., Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils, Circ. res., 89, 10, 874-881, (2001)
[14] Labeit, D.; Watanabe, K.; Witt, C.; Fujita, H.; Wu, Y.; Lahmers, S.; Funck, T.; Labeit, S.; Granzier, H., Calcium-dependent molecular spring elements in the giant protein titin, Proc. natl. acad. sci. USA, 100, 23, 13716-13721, (2003)
[15] Magid, A.; Law, D.J., Myofibrils bear most of the resting tension in frog skeletal muscle, Science, 230, 4731, 1280-1282, (1985)
[16] Mehta, A.; Herzog, W., Cross-bridge induced force enhancement?, J. biomech., 41, 1611-1615, (2008)
[17] Morgan, D.L.; Whitehead, N.P.; Wise, A.K.; Gregory, J.E.; Proske, U., Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle, J. physiol., 522, 503-513, (2000)
[18] Peterson, D.R.; Rassier, D.E.; Herzog, W., Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship, J. exp. biol., 207, Pt 16, 2787-2791, (2004)
[19] Pinniger, G.J.; Ranatunga, K.W.; Offer, G.W., Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke, J. physiol., 573, 627-643, (2006)
[20] Rode, C.; Siebert, T.; Blickhan, R., Titin-induced force enhancement and force depression: a sticky spring mechanism in muscle contractions?, J. theor. biol., 259, 350-360, (2009) · Zbl 1402.92042
[21] Roots, H.; Offer, G.W.; Ranatunga, K.W., Comparison of the tension responses to ramp shortening and lengthening in intact Mammalian muscle fibres: crossbridge and non-crossbridge contributions, J. muscle res. cell motil., 28, 123-139, (2007)
[22] Sosa, H.; Popp, D.; Ouyang, G.; Huxley, H.E., Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths, Biophys. J., 67, 1, 283-292, (1994)
[23] Telley, I.A.; Denoth, J.; Ranatunga, K.W., Inter-sarcomere dynamics in muscle fibres. A neglected subject?, Adv. exp. med. biol., 538, 481-500, (2003), (discussion 500)
[24] Telley, I.A.; Stehle, R.; Ranatunga, K.W.; Pfitzer, G.; Stüssi, E.; Denoth, J., Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no sarcomere popping, J. physiol., 573, Pt 1, 173-185, (2006)
[25] Till, O.; Siebert, T.; Rode, C.; Blickhan, R., Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination, J. theor. biol., 255, 176-187, (2008) · Zbl 1400.92053
[26] Tskhovrebova, L.; Trinick, J., Role of titin in vertebrate striated muscle, Philos. trans. R. soc. London B biol. sci., 357, 1418, 199-206, (2002)
[27] van Soest, A.J.; Bobbert, M.F., The contribution of muscle properties in the control of explosive movements, Biol. cybern., 69, 195-204, (1993)
[28] Vandenboom, R.; Claflin, D.R.; Julian, F.J., Effects of rapid shortening on rate of force regeneration and myoplasmic [ca2+] in intact frog skeletal muscle fibres, J. physiol., 511, Pt 1, 171-180, (1998)
[29] Wang, K.; McCarter, R.; Wright, J.; Beverly, J.; Ramirez-Mitchell, R., Viscoelasticity of the sarcomere matrix of skeletal muscles. the titin-myosin composite filament is a dual-stage molecular spring, Biophys. J., 64, 4, 1161-1177, (1993)
[30] Winters, J.M., Hill-based muscle models: a systems engineering perspective, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.