×

zbMATH — the first resource for mathematics

Towards formalization of the soliton counting technique for the Khovanov-Rozansky invariants in the deformed \(\mathcal{R}\)-matrix approach. (English) Zbl 1407.81006
From the abstract: We consider recently developed Cohomological Field Theory (CohFT) soliton counting diagram technique for Khovanov (Kh) and Khovanov-Rozansky (KhR) invariants. We demonstrate that soliton counting technique can be totally formalized at an intermediate stage, at least in particular cases. We present the corresponding algorithm, based on the approach involving deformed \(\mathcal R\)-matrix and minimal positive division.

MSC:
81-08 Computational methods for problems pertaining to quantum theory
35C08 Soliton solutions
35C15 Integral representations of solutions to PDEs
Software:
Knot Atlas
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Galakhov and G. Moore, arXiv:1607.04222 [hep-th].
[2] D. Galakhov, arXiv:1702.07086 [hep-th].
[3] Anokhina, A.; Morozov, A., J. High Energy Phys., 07, 063, (2014)
[4] Khovanov, M.; Rozansky, L., Fund. Math., 199, 1, (2008)
[5] Khovanov, M., Duke Math. J., 101, 359, (2000)
[6] Kauffman, L. H., The Interface of Knots and Physics, 788, (2001), World Scientific: World Scientific, Singapore
[7] D. Bar-Natan et al., The knot atlas, http://katlas.org. · Zbl 0898.57001
[8] A. Morozov et al., The knotebook, www.knotebook.org.
[9] Sergei, G.; Mikhail, K.; Johannes, W., Physics and Mathematics of Link Homology, 177, (2016), AMS: AMS, Providence
[10] Gukov, S.; Schwarz, A.; Vafa, C., Lett. Math. Phys., 74, 53, (2005)
[11] R. Jacob, arXiv:math.GT/0607544.
[12] Dunfield, N. M.; Gukov, S.; Rasmussen, J., Experiment. Math., 15, 129, (2006)
[13] Eugene, G.; Lukas, L., Experiment. Math., 24, 162, (2015)
[14] D. Gaiotto and E. Witten, arXiv:1106.4789 [hep-th].
[15] Schwarz, A. S., New topological invariants arising in the theory of quantized fields, Proc. Int. Topological Conference, 2, (1987), Institute of Mathematics and Mechanics of the Azerbaijan Academy of Sciences of USSR: Institute of Mathematics and Mechanics of the Azerbaijan Academy of Sciences of USSR, Baku
[16] Witten, E., Commun. Math. Phys., 121, 351, (1989)
[17] Witten, E., Nucl. Phys. B, 322, 629, (1989)
[18] Bar-Natan, D., Algebr. Geom. Topol., 2, 337, (2002)
[19] Dolotin, V.; Morozov, A., J. High Energy Phys., 1301, 065, (2013)
[20] Dolotin, V.; Morozov, A., 411, 012013, (2013)
[21] N. Satoshi and O. Alexei, Proceedings of.
[22] Carqueville, N.; Murfet, D., Algebr. Geom. Topol., 14, 489, (2014)
[23] Dolotin, V.; Morozov, A., Nucl. Phys. B, 878, 12, (2014)
[24] Dunin-Barkowski, P., J. High Energy Phys., 03, 021, (2013)
[25] Mironov, A.; Morozov, A.; Morozov, A., 1562, 123, (2013)
[26] Bishler, L.; Morozov, A.; Morozov, A., Int. J. Mod. Phys. A, 30, 1550074, (2015)
[27] E. Gorsky, S. Gukov and M. Stosic, arXiv:1304.3481 [math.QA].
[28] Arthamonov, S.; Mironov, A.; Morozov, A., Theor. Math. Phys., 179, 509, (2014)
[29] Kononov, Ya.; Morozov, A., JETP Lett., 101, 831, (2015)
[30] K. Mikhail, arXiv:math.QA/0302060.
[31] Nawata, S.; Ramadevi, P.; Zodinmawia, J. High Energy Phys., 1401, 126, (2014)
[32] I. Danilenko, arXiv:1405.0884 [hep-th].
[33] Turaev, V. G., Invent. Math., 92, 527, (1988)
[34] Reshetikhin, N. Yu.; Turaev, V. G., Commun. Math. Phys., 127, 1, (1990)
[35] Morozov, A.; Smirnov, A., Nucl. Phys. B, 835, 284, (2010)
[36] Mironov, A.; Morozov, A.; Morozov, A., J. High Energy Phys., 03, 034, (2012)
[37] A. Anokhina, arXiv:1412.8444v2 [hep-th].
[38] Klimyk, A.; Schmüdgen, K., Quantum Groups and Their Representations, 552, (2012), Springer: Springer, Berlin · Zbl 0891.17010
[39] Pressley, A.; Segal, G., Loop Groups, 316, (1988), Clarendon Press: Clarendon Press, Oxford
[40] Gelfand, S. I.; Manin, Yu. I., Homological Algebra, 222, (1994), Springer: Springer, Berlin
[41] Fourier, G.; Littelmann, P., Adv. Math., 211, 566, (2007)
[42] E. Ben, arXiv:1603.00407 [math.GT].
[43] H. Matthew, arXiv:1704.01562 [math.GT].
[44] Anokhina, A.; Morozov, A., Theor. Math. Phys., 178, 1, (2014)
[45] Gukov, S.; Stosic, M., 18, 309, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.