zbMATH — the first resource for mathematics

A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under finite deformation. (English) Zbl 1407.74021
Summary: The theory of quasi-linear viscoelasticity (QLV) is modified and developed for transversely isotropic (TI) materials under finite deformation. For the first time, distinct relaxation responses are incorporated into an integral formulation of nonlinear viscoelasticity, according to the physical mode of deformation. The theory is consistent with linear viscoelasticity in the small strain limit and makes use of relaxation functions that can be determined from small-strain experiments, given the time/deformation separability assumption. After considering the general constitutive form applicable to compressible materials, attention is restricted to incompressible media. This enables a compact form for the constitutive relation to be derived, which is used to illustrate the behaviour of the model under three key deformations: uniaxial extension, transverse shear and longitudinal shear. Finally, it is demonstrated that the Poynting effect is present in TI, neo-Hookean, modified QLV materials under transverse shear, in contrast to neo-Hookean elastic materials subjected to the same deformation. Its presence is explained by the anisotropic relaxation response of the medium.

74D05 Linear constitutive equations for materials with memory
Full Text: DOI
[1] Wineman A. (2009) Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300-366. (doi:10.1177/1081286509103660) · Zbl 1197.74021
[2] Limbert G, Middleton J. (2004) A transversely isotropic viscohyperelastic material: application to the modeling of biological soft connective tissues. Int. J. Solids Struct. 41, 4237-4260. (doi:10.1016/j.ijsolstr.2004.02.057) · Zbl 1079.74520
[3] Quintanilla R, Saccomandi G. (2007) The importance of the compatibility of nonlinear constitutive theories with their linear counterparts. J. Appl. Mech. 74, 455-460. (doi:10.1115/1.2338053) · Zbl 1111.74605
[4] Rashid B, Destrade M, Gilchrist MD. (2012) Mechanical characterization of brain tissue in compression at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 10, 23-38. (doi:10.1016/j.jmbbm.2012.01.022)
[5] Green AE, Rivlin RS. (1957) The mechanics of non-linear materials with memory. Arch. Ration. Mech. Anal. 1, 1-21. (doi:10.1007/BF00297992) · Zbl 0079.17602
[6] Findley WN, Lai JS, Onaran K. (1989) Creep and relaxation of nonlinear viscoelastic materials. New York, NY: Dover.
[7] Cheung J, Hsiao C. (1972) Nonlinear anisotropic viscoelastic stresses in blood vessels. J. Biomech. 5, 607-619. (doi:10.1016/0021-9290(72)90033-4)
[8] Darvish K, Crandall J. (2001) Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633-645. (doi:10.1016/S1350-4533(01)00101-1)
[9] Coleman BD, Noll W. (1961) Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239-249. (doi:10.1103/revmodphys.33.239) · Zbl 0103.40804
[10] Pipkin A, Rogers TG. (1968) A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59-72. (doi:10.1016/0022-5096(68)90016-1) · Zbl 0158.43601
[11] Rajagopal K, Wineman AS. (2009) Response of anisotropic nonlinearly viscoelastic solids. Math. Mech. Solids 14, 490-501. (doi:10.1177/1081286507085377) · Zbl 1257.74032
[12] Fung YC. (1972) Stress-strain-history relations of soft tissues in simple elongation. In Symposium on biomechanics its foundations and objectives, vol. 7, pp. 181-208. Englewood Cliffs, NJ: Prentice-Hall.
[13] Fung YC. (1981) Biomechanics: mechanical properties of living tissues. New York, NY: Springer.
[14] De Pascalis R, Abrahams ID, Parnell WJ. (2014) On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058. (doi:10.1098/rspa.2014.0058)
[15] Abramowitch SD, Woo SLY. (2004) An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. 126, 92-97. (doi:10.1115/1.1645528)
[16] Huyghe JM, van Campen DH, Arts T, Heethaar RM. (1991) The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation. J. Biomech. 24, 841-849. (doi:10.1016/0021-9290(91)90309-b)
[17] Puso M, Weiss JA. (1998) Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62-70. (doi:10.1115/1.2834308)
[18] Sahoo D, Deck C, Willinger R. (2014) Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33, 24-42. (doi:10.1016/j.jmbbm.2013.08.022)
[19] Chatelin S, Deck C, Willinger R. (2013) An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J. Biorheol. 27, 26-37. (doi:10.1007/s12573-012-0055-6)
[20] Motallebzadeh H, Charlebois M, Funnell WRJ. (2013) A non-linear viscoelastic model for the tympanic membrane. J. Acoust. Soc. Am. 134, 4427-4434. (doi:10.1121/1.4828831)
[21] Jannesar S, Nadler B, Sparrey CJ. (2016) The transverse isotropy of spinal cord white matter under dynamic load. J. Biomech. Eng. 138, 091004. (doi:10.1115/1.4034171)
[22] Vena P, Gastaldi D, Contro R. (2006) A constituent-based model for the nonlinear viscoelastic behavior of ligaments. J. Biomech. Eng. 128, 449-457. (doi:10.1115/1.2187046)
[23] Tschoegl NW. (2012) The phenomenological theory of linear viscoelastic behavior: an introduction. Berlin, Germany: Springer Science & Business Media.
[24] Weiss JA, Gardiner JC, Bonifasi-Lista C. (2002) Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943-950. (doi:10.1016/s0021-9290(02)00041-6)
[25] Delingette H, Ayache N. (2004) Soft tissue modeling for surgery simulation. Handb. Numer. Anal. 12, 453-550. (doi:10.1016/s1570-8659(03)12005-4)
[26] Miller K, Chinzei K. (1997) Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30, 1115-1121. (doi:10.1016/s0021-9290(97)00092-4)
[27] Miller K. (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32, 531-537. (doi:10.1016/s0021-9290(99)00010-x)
[28] Valanis KC. (1971) Irreversible thermodynamics of continuous media; internal variable theory. CISM Courses and Lectures No. 77. Berlin, Germany: Springer.
[29] Lubliner J. (1985) A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93-99. (doi:10.1016/0093-6413(85)90075-8)
[30] Simo J. (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods. Appl. Mech. Eng. 60, 153-173. (doi:10.1016/0045-7825(87)90107-1) · Zbl 0588.73082
[31] Flory P. (1961) Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829-838. (doi:10.1039/tf9615700829)
[32] Holzapfel GA. (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods. Eng. 39, 3903-3926. (doi:10.1002/(sici)1097-0207(19961130)39:22<3903::aid-nme34>3.0.co;2-c) · Zbl 0920.73064
[33] Holzapfel GA, Gasser TC. (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods. Appl. Mech. Eng. 190, 4379-4403. (doi:10.1016/s0045-7825(00)00323-6)
[34] Holzapfel GA, Gasser TC, Stadler M. (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solids 21, 441-463. (doi:10.1016/S0997-7538(01)01206-2) · Zbl 1100.74597
[35] Pena E, Calvo B, Martinez M, Doblaré M. (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int. J. Solids Struct. 44, 760-778. (doi:10.1016/j.ijsolstr.2006.05.018) · Zbl 1176.74043
[36] Whitford C, Movchan NV, Studer H, Elsheikh A. (2018) A viscoelastic anisotropic hyperelastic constitutive model of the human cornea. Biomech. Model Mechanobiol. 17, 19-29. (doi:10.1007/s10237-017-0942-2)
[37] Garcia-Gonzalez D, Jerusalem A, Garzon-Hernandez S, Zaera R, Arias A. (2018) A Continuum mechanics constitutive framework for transverse isotropic soft tissues. J. Mech. Phys. Solids 112, 209-224. (doi:10.1016/j.jmps.2017.12.001)
[38] Jridi N, Arfaoui M, Hamdi A, Salvia M, Bareille O. (2018) Separable finite viscoelasticity: integral-based models vs. experiments. Mech Time Dependent Mater.1-31. (doi:10.1007/s11043-018-9383-2)
[39] Spencer AJMet al.(1984) Continuum theory of the mechanics of fibre-reinforced composites. CISM Courses and Lectures No. 282. Berlin, Germany: Springer.
[40] Christensen R. (2012) Theory of viscoelasticity: an introduction. Amsterdam, The Netherlands: Elsevier.
[41] Shu L, Onat E. (2014) On anisotropic linear viscoelastic solids. In Mechanics and Chemistry of Solid Propellants - Proceedings of the Fourth Symposium on Naval Structural Mechanics - Held at Purdue University, Lafayette, Indiana - April 19-21, 1965 (eds Eringen AC, Liebowitz H, Koh SL, Crowley JM, p. 203-215. Pergamon Press.
[42] Ogden RW. (2007) Incremental statics and dynamics of pre-stressed elastic materials. In Waves in nonlinear pre-stressed materials (eds Destrades M, Saccomandi G), pp. 1-26. Berlin, Germany: Springer. · Zbl 1167.74006
[43] Lubarda V, Chen M. (2008) On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3, 153-171. (doi:10.2140/jomms.2008.3.153)
[44] Pucci E, Saccomandi G. (2015) Some remarks about a simple history dependent nonlinear viscoelastic model. Mech. Res. Commun. 68, 70-76. (doi:10.1016/j.mechrescom.2015.04.007)
[45] Gilchrist M, Rashid B, Murphy JG, Saccomandi G. (2013) Quasi-static deformations of biological soft tissue. Math. Mech. Solids 18, 622-633. (doi:10.1177/1081286513485770)
[46] Murphy JG. (2013) Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A Solids 42, 90-96. (doi:10.1016/j.euromechsol.2013.04.003) · Zbl 1406.74501
[47] Destrade M, Horgan C, Murphy J. (2015) Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. 95, 87-98. (doi:10.1007/s10665-014-9706-5) · Zbl 1360.74110
[48] Poynting J. (1909) On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. A 82, 546-559. Containing Papers of a Mathematical and Physical Character. (doi:10.1098/rspa.1909.0059) · JFM 40.0875.02
[49] Mihai LA, Goriely A. (2011) Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A 467, 3633-3646. (doi:10.1098/rspa.2011.0281) · Zbl 1243.74011
[50] Mihai LA, Goriely A. (2013) Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalised empirical inequalities in non-linear elasticity. Int. J. Non Linear Mech. 49, 1-14. (doi:10.1016/j.ijnonlinmec.2012.09.001)
[51] Horgan C, Murphy J. (2017) Poynting and reverse Poynting effects in soft materials. Soft Matter 13, 4916-4923. (doi:10.1039/c7sm00992e)
[52] Parnell WJ. (2016) The Eshelby, Hill moment and concentration tensors for ellipsoidal inhomogeneities in the newtonian potential problem and linear elastostatics. J. · Zbl 1353.31006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.