zbMATH — the first resource for mathematics

A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system. (English) Zbl 1407.65158
Summary: We propose a novel second order in time, fully decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. The computation of order parameter, pressure and velocity is completely decoupled in our scheme. We show that the scheme is uniquely solvable, unconditionally energy stable and mass-conservative. Ample numerical results are presented to gauge the efficiency and robustness of our scheme.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76T99 Multiphase and multicomponent flows
76S05 Flows in porous media; filtration; seepage
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35Q35 PDEs in connection with fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
Full Text: DOI
[1] Lee, H-G; Lowengrub, JS; Goodman, J., Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration, Phys. Fluids, 14, 492-513, (2002) · Zbl 1184.76316
[2] Lee, H-G; Lowengrub, JS; Goodman, J., Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime, Phys. Fluids, 14, 514-545, (2002) · Zbl 1184.76317
[3] Wise, SM, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44, 38-68, (2010) · Zbl 1203.76153
[4] Bear, J.: Dynamics of Fluids in Porous Media. Courier Dover Publications, Mineola (1988) · Zbl 1191.76002
[5] Nield, D.A., Bejan, A.: Convection in Porous Media, 2nd edn, p. 546. Springer, New York (1999) · Zbl 0924.76001
[6] Han, D.; Wang, X., Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system, Numer. Methods Partial Differ. Equ., 32, 936-954, (2016) · Zbl 1381.76170
[7] Dedè, Luca; Garcke, Harald; Lam, Kei Fong, A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities, Journal of Mathematical Fluid Mechanics, 20, 531-567, (2017) · Zbl 1394.35353
[8] Feng, X.; Wise, S., Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal., 50, 1320-1343, (2012) · Zbl 1426.76258
[9] Wang, X.; Zhang, Z., Well-posedness of the Hele-Shaw-Cahn-Hilliard system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 367-384, (2013) · Zbl 1291.35240
[10] Wang, X.; Wu, H., Long-time behavior for the Hele-Shaw-Cahn-Hilliard system, Asymptot. Anal., 78, 217-245, (2012) · Zbl 1246.35164
[11] Lowengrub, J.; Titi, E.; Zhao, K., Analysis of a mixture model of tumor growth, Eur. J. Appl. Math., 24, 691-734, (2013) · Zbl 1292.35153
[12] Jiang, J.; Wu, H.; Zheng, S., Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth, J. Differ. Equ., 259, 3032-3077, (2015) · Zbl 1330.35039
[13] Han, Daozhi, A Decoupled Unconditionally Stable Numerical Scheme for the Cahn-Hilliard-Hele-Shaw System, Journal of Scientific Computing, 66, 1102-1121, (2015) · Zbl 06760785
[14] Han, D.; Wang, X., Initial-boundary layer associated with the nonlinear Darcy-Brinkman system, J. Differ. Equ., 256, 609-639, (2014) · Zbl 1331.35278
[15] Chemetov, N.; Neves, W., The generalized Buckley-Leverett system: solvability, Arch. Ration. Mech. Anal., 208, 1-24, (2013) · Zbl 1320.76110
[16] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, Vol. 30. Annu. Rev. Fluid Mech., vol. 30, pp. 139-165. Annual Reviews, Palo Alto, CA (1998) · Zbl 1398.76051
[17] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454, 2617-2654, (1998) · Zbl 0927.76007
[18] Magaletti, F.; Picano, F.; Chinappi, M.; Marino, L.; Casciola, CM, The sharp-interface limit of the Cahn-Hilliard-Navier-Stokes model for binary fluids, J. Fluid Mech., 714, 95-126, (2013) · Zbl 1284.76116
[19] Guo, R.; Xia, Y.; Xu, Y., An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system, J. Comput. Phys., 264, 23-40, (2014) · Zbl 1349.76211
[20] Diegel, AE; Feng, XH; Wise, SM, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM J. Numer. Anal., 53, 127-152, (2015) · Zbl 1330.76065
[21] Chen, W.; Liu, Y.; Wang, C.; Wise, SM, Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, Math. Comp., 85, 2231-2257, (2016) · Zbl 1342.65174
[22] Liu, Y.; Chen, W.; Wang, C.; Wise, SM, Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system, Numer. Math., 135, 679-709, (2017) · Zbl 06695814
[23] Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In:Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998). Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39-46. MRS, Warrendale, PA (1998)
[24] Collins, C.; Shen, J.; Wise, SM, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Commun. Comput. Phys., 13, 929-957, (2013) · Zbl 1373.76161
[25] Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 1049-1072, (2006) · Zbl 1344.76052
[26] Kay, D.; Styles, V.; Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interf. Free Bound., 10, 15-43, (2008) · Zbl 1144.35043
[27] Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 1159-1179, (2010) · Zbl 1410.76464
[28] Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In:Multiscale Modeling and Analysis for Materials Simulation. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 22, pp. 147-195. World Sci. Publ., Hackensack, NJ, (2012)
[29] Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Numer. Anal., 51, 3036-3061, (2013) · Zbl 1331.35277
[30] Guo, Z.; Lin, P.; Lowengrub, JS, A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law, J. Comput. Phys., 276, 486-507, (2014) · Zbl 1349.76057
[31] Minjeaud, S., An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Methods Partial Differ. Equ., 29, 584-618, (2013) · Zbl 1364.76091
[32] Shen, J.; Yang, X., Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows, SIAM J. Numer. Anal., 53, 279-296, (2015) · Zbl 1327.65178
[33] Shen, J.; Yang, X.; Yu, H., Efficient energy stable numerical schemes for a phase field moving contact line model, J. Comput. Phys., 284, 617-630, (2015) · Zbl 1351.76184
[34] Guermond, J-L; Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228, 2834-2846, (2009) · Zbl 1159.76028
[35] Hu, Z.; Wise, SM; Wang, C.; Lowengrub, JS, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228, 5323-5339, (2009) · Zbl 1171.82015
[36] Baskaran, A.; Lowengrub, JS; Wang, C.; Wise, SM, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51, 2851-2873, (2013) · Zbl 1401.82046
[37] Shen, J.; Wang, C.; Wang, X.; Wise, SM, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50, 105-125, (2012) · Zbl 1247.65088
[38] Han, D.; Wang, X., A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290, 139-156, (2015) · Zbl 1349.76213
[39] Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput., 7, 870-891, (1986) · Zbl 0594.76023
[40] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193, 511-543, (2004) · Zbl 1109.76348
[41] Diegel, Amanda E.; Wang, Cheng; Wang, Xiaoming; Wise, Steven M., Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, Numerische Mathematik, 137, 495-534, (2017) · Zbl 06804021
[42] Dong, S.; Shen, J., A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, J. Comput. Phys., 231, 5788-5804, (2012) · Zbl 1277.76118
[43] Aland, S., Time integration for diffuse interface models for two-phase flow, J. Comput. Phys., 262, 58-71, (2014) · Zbl 1349.82065
[44] Guillén-González, F.; Tierra, G., On linear schemes for a Cahn-Hilliard diffuse interface model, J. Comput. Phys., 234, 140-171, (2013) · Zbl 1284.35025
[45] Yang, Xiaofeng; Zhao, Jia; Wang, Qi; Shen, Jie, Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method, Mathematical Models and Methods in Applied Sciences, 27, 1993-2030, (2017) · Zbl 1393.80003
[46] Cheng, Q.; Yang, X.; Shen, J., Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model, J. Comput. Phys., 341, 44-60, (2017) · Zbl 1380.65203
[47] Yang, X.; Ju, L., Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model, Comput. Methods Appl. Mech. Eng., 318, 1005-1029, (2017)
[48] Zhao, J.; Yang, X.; Gong, Y.; Wang, Q., A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals, Comput. Methods Appl. Mech. Eng., 318, 803-825, (2017)
[49] Yang, X.; Zhao, J.; Wang, Q., Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333, 104-127, (2017) · Zbl 1375.82121
[50] Yang, X.; Han, D., Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation, J. Comput. Phys., 330, 1116-1134, (2017) · Zbl 1380.65209
[51] Guermond, JL; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 6011-6045, (2006) · Zbl 1122.76072
[52] Guermond, J-L; Quartapelle, L., On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numer. Math., 80, 207-238, (1998) · Zbl 0914.76051
[53] Han, D.; Wang, X.; Wu, H., Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry, J. Differ. Equ., 257, 3887-3933, (2014) · Zbl 1302.35217
[54] Diegel, AE; Wang, C.; Wise, SM, Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation, IMA J. Numer. Anal., 36, 1867-1897, (2016) · Zbl 1433.80005
[55] Hecht, F., New development in freefem++, J. Numer. Math., 20, 251-265, (2012) · Zbl 1266.68090
[56] Christlieb, Andrew; Jones, Jaylan; Promislow, Keith; Wetton, Brian; Willoughby, Mark, High accuracy solutions to energy gradient flows from material science models, Journal of Computational Physics, 257, 193-215, (2014) · Zbl 1349.65510
[57] Glasner, K.; Orizaga, S., Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315, 52-64, (2016) · Zbl 1349.65515
[58] Bars, M.; Worster, MG, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech., 550, 149-173, (2006) · Zbl 1097.76066
[59] Saffman, PG; Taylor, G., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. Lond. Ser. A, 245, 312-3292, (1958) · Zbl 0086.41603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.