×

zbMATH — the first resource for mathematics

A robust adaptive-to-model enhancement test for parametric single-index models. (English) Zbl 1407.62064
Authors’ abstract: This paper is devoted to test the parametric single-index structure of the underlying model when there are outliers in observations. First, a test that is robust against outliers is suggested. The Hampel’s second-order influence function of the test statistic is proved to be bounded. Second, the test fully uses the dimension reduction structure of the hypothetical model and automatically adapts to alternative models when the null hypothesis is false. Thus, the test can greatly overcome the dimensionality problem and is still omnibus against general alternative models. The performance of the test is demonstrated by both Monte Carlo simulation studies and an application to a real dataset.

MSC:
62F03 Parametric hypothesis testing
62F35 Robustness and adaptive procedures (parametric inference)
Software:
robustbase
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bierens, HJ, A consistent conditional moment test of functional form, Ecomometrica, 58, 1443-1458, (1990) · Zbl 0737.62058
[2] Bierens, H. J., Ploberger, W. (1997). Asymptotic theory of integrated conditional moment test. Econometrica, 65, 1129-1151. · Zbl 0927.62085
[3] Escanciano, JC, Goodness-of-fit tests for linear and nonlinear time series models, Journal of the American Statistical Association, 101, 531-541, (2006) · Zbl 1119.62359
[4] Escanciano, JC, A consistent diagnostic test for regression models using projections, Econometric Theory, 22, 1030-1051, (2006) · Zbl 1170.62318
[5] Escanciano, JC, Model checks using residual marked empirical processes, Statistica Sinica, 17, 115-138, (2007) · Zbl 1145.62071
[6] Fan, J. Q., Zhang, C., Zhang, J. (2001). Generalized likelihood ratio statistics and the wilks phenomenon. The Annals of Statistics, 29, 153-193. · Zbl 1029.62042
[7] Feng, L., Zou, C. L., Wang, Z. J., Zhu, L. X. (2015). Robust comparison of regression curves. Test, 24, 185-204. · Zbl 1315.62037
[8] Fernholz, L. T. (1983). von Mises calculus for statistical functionals. New York: Springer. · Zbl 0525.62031
[9] González-Manteiga, W., Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests for regression models. Test, 22, 361-411. · Zbl 1273.62086
[10] Guo, X., Wang, T., Zhu, L. X. (2016). Model checking for parametric single index models: A dimension-reduction model-adaptive approach. Journal of the Royal Statistical Society: Series B, 78, 1013-1035. · Zbl 1414.62131
[11] Hampel, FR, The influence curve and its role in robust estimation, Journal of the American Statistical Association, 69, 383-393, (1974) · Zbl 0305.62031
[12] Härdle, W. (1992). Applied nonparametric regression. Cambridge: Cambridge University Press. · Zbl 0714.62030
[13] Härdle, W., Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. The Annals of Statistics, 21, 1296-1947. · Zbl 0795.62036
[14] Heritier, S., Ronchetti, E. (1994). Robust bounded-influence tests in general parametric models. Journal of the American Statistical Association, 89, 897-904. · Zbl 0804.62037
[15] Horowitz, J. L., Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric meanregression model against a nonparametric alternative. Econometrica, 69, 599-631. · Zbl 1017.62012
[16] Huber, PJ, Projection pursuit, The Annals of Statistics, 13, 435-475, (1985) · Zbl 0595.62059
[17] Koul, H. L., Ni, P. P. (2004). Minimum distance regression model checking. Journal of Statistical Planning and Inference, 119, 109-141. · Zbl 1032.62036
[18] Lavergne, P., Patilea, V. (2008). Breaking the curse of dimensionality in nonparametric testing. Journal of Econometrics, 143, 103-122. · Zbl 1418.62199
[19] Lavergne, P., Patilea, V. (2012). One for all and all for one: Regression checks with many regressors. Journal of Business & Economic Statistics, 30, 41-52. · Zbl 0483.62016
[20] Li, KC, Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-327, (1991) · Zbl 0742.62044
[21] Markatou, M., Hettmansperger, T. P. (1990). Robust bounded-influence tests in linear models. Journal of American Statistical Association, 85, 187-190. · Zbl 0712.62029
[22] Markatou, M., Manos, G. (1996). Robust tests in nonlinear regression models. Journal of Statistical Planning and Inference, 55, 205-217. · Zbl 0857.62027
[23] Maronna, R., Martin, D., Yohai, V. (2006). Robust statistics: Theory and methods. New York: Wiley. · Zbl 1094.62040
[24] Nadaraya, EA, On estimating regression, Theory of Probability and Its Applications, 10, 186-196, (1964) · Zbl 0136.40902
[25] Schrader, R. M., Hettmansperger, T. P. (1980). Robust analysis of variance based upon a likelihood ratio criterion. Biometrika, 67, 93-101. · Zbl 0423.62030
[26] Sen, PK, On \(M\)-tests in linear models, Biometrika, 69, 245-248, (1982) · Zbl 0483.62016
[27] Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley. · Zbl 0538.62002
[28] Stone, CJ, Optimal rates of convergence for nonparametric estimators, Annals of Statistics, 8, 1348-1360, (1980) · Zbl 0451.62033
[29] Stute, W, Nonparametric model checks for regression, Annals of Statistics, 25, 613-641, (1997) · Zbl 0926.62035
[30] Stute, W., Zhu, L. X. (2002). Model checks for generalized linear models. Schadinavian Journal of Statistics, 29, 535-545. · Zbl 1035.62073
[31] Stute, W., González-Manteiga, W., Presedo-Quindimil, M. (1998a). Bootstrap approximations in model checks for regression. Journal of the American Statistical Association, 93, 141-149. · Zbl 0902.62027
[32] Stute, W., Thies, S., Zhu, L. X. (1998b). Model checks for regression: An innovation process approach. Annals of Statistics, 26, 1916-1934. · Zbl 0930.62044
[33] Stute, W., Xu, W. L., Zhu, L. X. (2008). Model diagnosis for parametric regression in high dimensional spaces. Biometrika, 95, 1-17. · Zbl 1437.62614
[34] Van Keilegom, I., Gonzáles-Manteiga, W., Sánchez Sellero, C. (2008). Goodness-of-fit tests in parametric regression based on the estimation of the error distribution. Test, 17, 401-415. · Zbl 1196.62049
[35] Wang, L., Qu, A. N. (2007). Robust tests in regression models with omnibus alternatives and bounded influence. Journal of the American Statistical Association, 102, 347-358. · Zbl 1284.62303
[36] Watson, GS, Smoothing regression analysis, Sankhyā: The Indian Journal of Statistics, Series A, 26, 359-372, (1964) · Zbl 0137.13002
[37] Whang, YJ, Consistent bootstrap tests of parametric regression functions, Journal of Econometrics, 98, 27-46, (2000) · Zbl 0966.62018
[38] Xia, Q., Xu, W. L., Zhu, L. X. (2015). Consistently determining the number of factors in multivariate volatility modelling. Statistica Sinica, 25, 1025-1044. · Zbl 1415.62067
[39] Xia, YC, A constructive approach to the estimation of dimension reduction directions, Annals of Statistics, 35, 2654-2690, (2007) · Zbl 1360.62196
[40] Zheng, JX, A consistent test of functional form via nonparametric estimation techniques, Journal of Econometrics, 75, 263-289, (1996) · Zbl 0865.62030
[41] Zhu, L. P., Wang, T., Zhu, L. X., Ferré, L. (2010). Sufficient dimension reduction through discretization-expectation estimation. Biometrika, 97, 295-304. · Zbl 1205.62048
[42] Zhu, LX, Model checking of dimension-reduction type for regression, Statistica Sinica, 13, 283-296, (2003) · Zbl 1015.62042
[43] Zhu, L. X., An, H. Z. (1992). A test for nonlinearity in regression models. Journal of Mathematics, \(4\), 391-397. (Chinese). · Zbl 0786.62067
[44] Zhu, L. X., Li, R. Z. (1998). Dimension-reduction type test for linearity of a stochastic model. Acta Mathematicae Applicatae Sinica, 14, 165-175. · Zbl 0927.62044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.