×

zbMATH — the first resource for mathematics

Inter-filament spacing mediates calcium binding to troponin: a simple geometric-mechanistic model explains the shift of force-length maxima with muscle activation. (English) Zbl 1406.92116
Summary: The maximum of a muscle fiber’s force-length curve (FLC) shifts to shorter lengths as muscle activation increases. State-of-the-art muscle models cannot explain the mechanistic basis for this shift, which is therefore either omitted or added ad hoc in a descriptive manner. A more theoretical approach developed by Hatze, who had particularly modeled the process of muscle activation, does predict this shift but can be shown to consist of multiple mathematical attempts that are all inconsistent with their common assertion: to represent local volume constancy. What mechanism may underlie the experimentally well-known shift has thus remained unclear. We work out here that the simple assumption of sarcomere volume constancy can, first of all, indeed explain the shift in the activity-Ca\(^{2+}\) relation as a function of sarcomere length by the enforcement of a decrease in inter-filament spacing that must occur as sarcomere length increases. We show that physiological data of this shift are consistent with a simply linear dependency of troponin (volumetric) density on sarcomere length. Further incorporating filament overlap as a second, independent mechanism, we can moreover reproduce, by means of a single master equation, an entire set of measured FLCs from literature, which testify shifts in their maxima at different levels of activation. We conclude that both phenomena, the shift in activity-Ca\(^{2+}\) relations with length and the shift in the maxima of FLCs with Ca\(^{2+},\) can be explained by the superposition of two mechanisms immediately connected to the same sarcomere state variable length: filament overlap and inter-filament spacing.

MSC:
92C30 Physiology (general)
92C10 Biomechanics
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acerenza, L.; Mizraji, E., Cooperativity: a unified view, Biochim. Biophys. Acta, 1339, 1, 155-166, (1997)
[2] April, E. W.; Brandt, P. W.; Elliot, G. F., The myofilament lattice: studies on isolated fibers, J. Cell Biol., 51, 1, 72-81, (1971)
[3] Balnave, C. D.; Allen, D. G., The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle, J. Physiol., 492, 3, 705-713, (1996)
[4] Blümel, M.; Guschlbauer, C.; Daun-Gruhn, S.; Hopper, S. L.; Büschges, A., Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation, Biol. Cybern., 106, 10, 559-571, (2012)
[5] Blümel, M.; Hooper, S. L.; Guschlbauer, C.; White, W. W.; Büschges, A., Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles, Biol. Cybern., 106, 10, 543-558, (2012)
[6] Brandt, P. W.; Cox, R. N.; Kawai, M., Can the binding of ca\({}^{2 +}\) to two regulatory sites on troponin c determine the steep pca/tension relationship of skeletal muscle?, Proc. Nation. Acad. Sci. U. S. A., 77, 8, 4717-4720, (1980)
[7] Brandt, P. W.; Lopez, E.; Reuben, J. P.; Grundfest, H., The relationship between myofilament packing density and sarcomere length in frog striated muscle, J. Cell Biol., 33, 2, 255-263, (1967)
[8] Brown, I. E.; Loeb, G. E., Measured and modeled properties of Mammalian skeletal muscle: IV. dynamics of activation and deactivation, J. Muscle Res. Cell. Motil., 21, 1, 33-47, (2000)
[9] Brown, I. E.; Scott, S. H.; Loeb, G. E., Mechanics of feline soleus: II. design and validation of a mathematical model., J. Muscle Res. Cell. Motil., 17, 2, 221-233, (1996)
[10] Brown, M.; Fisher, J. S.; Salsich, S., Stiffness and muscle function with age and reduced muscle use, J. Ortho. Res., 17, 3, 409-414, (1999)
[11] Buchanan, T. S.; Lloyd, D. G.; Manal, K.; Besier, T. F., Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command, J. Appl. Biomech., 20, 4, 367-395, (2004)
[12] Cantino, M. E.; Allen, T. S.; Gordon, A. M., Subsarcomeric distribution of calcium in demembranated fibers of rabbit psoas muscle, Biophys. J., 64, 1, 211-222, (1993)
[13] Cantino, M. E.; Eichen, J. G.; Daniels, S. B., Distributions of calcium in a and i bands of skinned vertebrate muscle fibers stretched to beyond filament overlap, Biophys. J., 75, 2, 948-956, (1998)
[14] Dick, T. J.M.; Clemente, C. J., Where have all the giants gone? how animals deal with the problem of size, PLoS Biol., 15, 1, e2000473, (2017)
[15] Dobesh, C. P.; Konhilas, J. P.; de Tombe, P. P., Cooperative activation in cardiac muscle: impact of sarcomere length, Am. J. Physiol., 282, 3, H1055-H1062, (2002)
[16] Dragomir, C. T., On the nature of forces acting between myofilaments in resting state and under contraction, J. Theor. Biol., 27, 3, 343-356, (1970)
[17] Ebashi, S.; Endo, M., Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol., 18, 1, 123-183, (1968)
[18] Fabiato, A.; Fabiato, F., Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells, J. Gen. Physiol., 72, 5, 667-699, (1978)
[19] Freivalds, A., Incorporation of active elements into the articulated total body model, (1985), Defense Technical Information Center
[20] Fuchs, F.; Martyn, D. A., Length-dependent ca\({}^{2 +}\) activation in cardiac muscle: some remaining questions, J. Muscle Res. Cell. Motil., 26, 4-5, 199-212, (2005)
[21] Fukuda, N.; Kajiwara, H.; Ishiwata, S.; Kurihara, S., Effects mgadp on length dependence of tension generation in skinned rat cardiac muscle, Am. Heart Assoc., 86, 1, 7pages, (2000)
[22] Godt, R. E.; Lindley, B. D., Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog, J. Gen. Physiol., 80, 2, 279-297, (1982)
[23] Gordon, A. M.; Huxley, A. F.; Julian, F. J., The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol., 184, 1, 170-192, (1966)
[24] Günther, M.; Schmitt, S.; Wank, V., High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models, Biol. Cybern., 97, 1, 63-79, (2007) · Zbl 1125.92007
[25] Haeufle, D. F.B.; Günther, M.; Bayer, A.; Schmitt, S., Hill-type muscle model with serial damping and eccentric force-velocity relation, J. Biomech., 47, 6, 1531-1536, (2014)
[26] Hatze, H., A myocybernetic control model of skeletal muscle, Biol. Cybern., 25, 2, 103-119, (1977) · Zbl 0346.92011
[27] Hatze, H., A general myocybernetic control model of skeletal muscle, Biol. Cybern., 28, 3, 143-157, (1978) · Zbl 0367.92002
[28] Hatze, H., Myocybernetic control models of skeletal muscle, (1981), University of South Africa · Zbl 0635.92003
[29] Hellam, D. C.; Podolsky, R. J., Force measurements in skinned muscle fibres, J. Physiol., 200, 3, 807-819, (1969)
[30] Hertz, P., Über den gegenseitigen durchschnittlichen abstand yon punkten, die mit bekannter mittlerer dichte im raume angeordnet sind, Mathematische Annalen, 67, 3, 387-398, (1909) · JFM 40.0289.03
[31] Hibberd, M. G.; Jewell, B. R., Calcium- and length-dependent force production in rat ventricular muscle, J. Physiol., 329, 1, 527-540, (1982)
[32] Hill, A. V., The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients, J. Physiol., 39, 5, 361-373, (1909)
[33] Hill, A. V., The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, Proc. Physiol. Soc., 1, 1, iv-vii, (1910)
[34] Hill, A. V., The combinations of haemoglobin with oxygen and with carbon monoxide, Biochem. J., 7, 5, 471-480, (1913)
[35] Huxley, A. F.; Niedergerke, R., Structural changes in muscle during contraction; interference microscopy of living muscle fibres, Nature, 173, 4412, 971-973, (1954)
[36] Huxley, H. E., Muscle cells, (Brachet, J.; Mirsky, A. E., The Cell, 4, (1960), Academic Press New York), 365-481
[37] Huxley, H. E., Fifty years of muscle and the sliding filament hypothesis, Eur. J. Biochem., 271, 8, 1403-1415, (2004)
[38] Irving, T. C.; Konhilas, J.; Perry, D.; Fischetti, R.; de Tombe, P. P., Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium, Am. J. Physiol., 279, 5, H2568-H2573, (2000)
[39] Jittivadhna, K.; Ruenwongsa, P.; Panijpan, B., Hand-held model of a sarcomere to illustrate the sliding filament mechanism in muscle contraction, Adv. Physiol. Edu., 33, 4, 297-301, (2009)
[40] Julian, F. J.; Moss, R. L., Sarcomere length-tension relations of frog skinned muscle fibres at lengths above the optimum, J. Physiol., 304, 1, 529-539, (1980)
[41] Kahn, P. B., Mathematical methods for scientists and engineers: linear and nonlinear systems, (2004), Courier Corporation
[42] Kentish, J. C.; ter Keurs, H. E.D. J.; Ricciardi, L.; Bucx, J. J.J.; Noble, M. I.M., Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle, Circ. Res., 58, 6, 755-768, (1986)
[43] ter Keurs, H. E.D. J.; Luff, A. R.; Luff, S. E., Contractile mechanisms in muscle, 511-525, (1984), Springer US Boston, MA
[44] Kistemaker, D. A.; van Soest, A. J.; Bobbert, M. F., Length-dependent \([\text{Ca}^{2 +}]\) sensitivity adds stiffness to muscle, J. Biomech., 38, 9, 1816-1821, (2005)
[45] Kistemaker, D. A.; van Soest, A. J.; Bobbert, M. F., A model of open-loop control of equilibrium position and stiffness of the human elbow joint, Biol. Cybern., 96, 3, 341-350, (2007) · Zbl 1161.92307
[46] Konhilas, J. P.; Irving, T. C.; de Tombe, P. P., Length-dependent activation in three striated muscle types of the rat, J. Physiol., 544, 1, 225-236, (2002)
[47] Lakatta, E. G.; Jewell, B. R., Length-dependent activation: its effect on the length-tension relation in cat ventricular muscle, Circ. Res., 40, 3, 251-257, (1977)
[48] Lieber, R. L., Skeletal muscle structure, function, and plasticity, 3, (2009), Lippincott Williams and Wilkins New York
[49] Lloyd, D. G.; Besier, T. F., An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech., 36, 6, 765-776, (2003)
[50] Marciniak, M.; Barańska, W.; Baran, W., Ultrastructural morphometric evaluation of muscles in pigeons kept under conditions of long-lasting hypodynamic state, Exp. Mol. Pathol., 37, 1, 26-36, (1982)
[51] McDonald, K. S., Ca\({}^{2 +}\) dependence of loaded shortening in rat skinned cardiac myocytes and skeletal muscle fibres, J. Physiol., 525, 1, 169-181, (2000)
[52] McNaught, A. D.; Wilkinson, A., Compendium of chemical terminology, (1997), Blackwell Scientific Publications Oxford
[53] McPhedran, A. M.; Wuerker, R. B.; Henneman, E., Properties of motor units in a homogeneous red muscle (soleus) of the cat, J. Neurophysiol., 28, 1, 71-84, (1965)
[54] Michailovich, S. M.; Kaiser-Herold, O.; Stojanovic, B.; Nedic, D.; Irving, T. C.; Geeves, M. A., Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice, J. Gen. Physiol., 148, 6, 459-488, (2016)
[55] Miller, R. A., Marginal concentration ratios and industrial profit rates: some empirical results of oligopoly behaviort, South. Econ. J., 34, 2, 259-267, (1967)
[56] Millman, B. M., The filament lattice of striated muscle, Physiol. Rev., 78, 2, 359-391, (1998)
[57] Pieples, K.; Arteaga, G.; Solaro, R. J.; Grupp, I.; Lorenz, J. N.; Biovin, G. P.; Jagatheesan, G.; Labitzke, E.; Detombe, P. P.; Konhilas, J. P.; Irving, T. C.; Wieczorek, D. F., Tropomyosin 3 expression leads to hypercontractility and attenuates myofilament length-dependent ca\({}^{2 +}\) activation, Am. J. Heart Circulat. Physiol., 283, 4, H1344-H1353, (2002)
[58] Rack, P. M.H.; Westbury, D. R., The effects of length and stimulus rate on tension in the isometric cat soleus muscle, J. Physiol., 204, 2, 443-460, (1969)
[59] Ramsey, R. W.; Street, S. F., The isometric length-tension diagram of isolated skeletal muscle fibers of the frog, J. Cell. Comp. Physiol., 15, 1, 11-34, (1940)
[60] Reconditi, M., Recent improvements in small angle x-ray diffraction for the study of muscle physiology, Rep. Prog. Phys., 69, 10, 2709-2759, (2006)
[61] Recorde, R., The ground of artes, teachyng the worke and practise of arithmetike, (1543), London
[62] Rice, J. J.; de Tombe, P. P., Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle, Prog. Biophys. Mol. Biol., 85, 2-3, 179-195, (2004)
[63] Riener, R.; Quintern, J., A physiologically based model of muscle activation verified by electrical stimulation, Bioelectrochem. Bioenerg., 43, 2, 257-264, (1997)
[64] Rockenfeller, R.; Götz, T., Optimal control of isometric muscle dynamics, J. Math. Fundament. Sci., 47, 1, 12-30, (2015)
[65] Rockenfeller, R.; Günther, M., Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments, Math. Biosci., 278, 1, 77-93, (2016) · Zbl 1346.92016
[66] Rockenfeller, R.; Günther, M., Corrigendum to “extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments” mathematical biosciences 278 (2016) 77-93, Math. Biosci., 291, 1, 56-58, (2017) · Zbl 1379.92004
[67] Rockenfeller, R.; Günther, M., Hill equation and hatze’s muscle activation dynamics complement each other: enhanced pharmacological and physiological interpretability of modelled activity-pca curves, J. Theor. Biol., 431, 1, 11-24, (2017) · Zbl 1388.92015
[68] Rockenfeller, R.; Günther, M., How to model a muscle’s active force-length relation: a comparative study, Comput. Methods Appl. Mech. Eng., 313, 1, 321-336, (2017)
[69] Rockenfeller, R.; Günther, M.; Schmitt, S.; Götz, T., Comparative sensitivity analysis of muscle activation dynamics, Comput. Math. Methods Med., 2015, 16pages, (2015)
[70] Rode, C.; Siebert, T.; Tomalka, A.; Blickhan, R., Myosin filament sliding through the z-disc relates striated muscle fibre structure to function, Proc. R. Soc. B, 283, 1826, 9Pages, (2016)
[71] Roszek, B.; Baan, G. C.; Huijing, P. A., Decreasing stimulation frequency-dependent length-force characteristics of rat muscle, J. Appl. Physi.ol, 77, 5, 2115-2124, (1994)
[72] Shiner, J. S.; Solaro, R. J., The Hill coefficient for the ca\({}^{2 +}\)-activation of striated muscle contraction, Biophys. J., 46, 4, 541-543, (1984)
[73] Shue, G. H.; Crago, P. E., Muscle-tendon model with length history-dependent activation-velocity coupling, Ann. Biomed. Eng., 26, 3, 369-380, (1998)
[74] Siebert, T.; Till, O.; Blickhan, R., Work partitioning of transversally loaded muscle: experimentation and simulation, Comput. Methods Biomech. Biomed. Eng., 17, 3, 217-229, (2014)
[75] Stephenson, D. G.; Forrest, Q. G., Different isometric force-\([\text{Ca}^{2 +}]\) relationships in slow- and fast-twitch skinned muscle fibres of the rat, Biochim. Biophys. Acta, 589, 2, 358-362, (1980)
[76] Stephenson, D. G.; Wendt, I. R., Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres, J. Muscle Res. Cell. Motil., 5, 3, 243-272, (1984)
[77] Stephenson, D. G.; Williams, D. A., Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures, J. Physiol., 317, 1, 281-302, (1981)
[78] Stephenson, D. G.; Williams, D. A., Effects of sarcomere length on the force-pca relation in fast- and slow-twitch skinned muscle fibres from the rat, J. Physiol., 333, 1, 637-653, (1982)
[79] Stienen, G. J.M.; Blangé, T.; Treijtel, B. W., Tension development and calcium sensitivity in skinned muscle fibres of the frog, Eur. J. Physiol., 405, 1, 19-23, (1985)
[80] Thelen, D. G., Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults, ASME J. Biomech. Eng., 125, 1, 70-77, (2003)
[81] van Leeuwen, J. L., Optimum power output and structural design of sarcomeres, J. Theor. Biol., 149, 2, 229-256, (1991)
[82] van Soest, A. J., Jumping from Structure to Control: A Simulation Study of Explosive Movements, (1992), Vrije Universiteit Amsterdam, Ph.D. thesis
[83] van Soest, A. J.; Bobbert, M. F., The contribution of muscle properties in the control of explosive movements, Biol. Cybern., 69, 3, 195-204, (1993)
[84] van Zandwijk, J. P., From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces, Biol. Cybern., 75, 5, 409-417, (1996) · Zbl 0862.92011
[85] Weiss, J. N., The Hill equation revisited: uses and misuses, Feder. Am. Soc. Exp. Biol. J., 11, 11, 835-841, (1997)
[86] Wigner, E. P.; Seitz, F., On the constitution of metallic sodium, Phys. Rev., 43, 1, 804-810, (1933) · Zbl 0007.04104
[87] Wigner, E. P.; Seitz, F., On the constitution of metallic sodium II, Phys. Rev., 46, 1, 509-524, (1934) · JFM 60.0784.04
[88] Wuerker, R. B.; McPhedran, A. M.; Henneman, E., Properties of motor units in a heterogeneous pale muscle (m. gastrocnemius) of the cat, J. Neurophysiol., 28, 1, 85-99, (1965)
[89] Yifrach, O., Hill coefficient for estimating the magnitude of cooperativity in gating transitions of voltage-dependent ion channels, Biophys. J., 87, 2, 822-830, (2004)
[90] Zajac, F. E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng., 17, 4, 359-411, (1989)
[91] Zuurbier, C. J.; Heslinga, J. W.; Lee-de Groot, M. B.E.; Van der Laarse, W. J., Mean sarcomere length-force relationship of rat muscle fibre bundles, J. Biomech., 28, 1, 83-87, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.