zbMATH — the first resource for mathematics

Neural field theory of plasticity in the cerebral cortex. (English) Zbl 1406.92080
Summary: A generalized timing-dependent plasticity rule is incorporated into a recent neural field theory to explore synaptic plasticity in the cerebral cortex, with both excitatory and inhibitory populations included. Analysis in the time and frequency domains reveals that cortical network behavior gives rise to a saddle-node bifurcation and resonant frequencies, including a gamma-band resonance. These system resonances constrain cortical synaptic dynamics and divide it into four classes, which depend on the type of synaptic plasticity window. Depending on the dynamical class, synaptic strengths can either have a stable fixed point, or can diverge in the absence of a separate saturation mechanism. Parameter exploration shows that time-asymmetric plasticity windows, which are signatures of spike-timing dependent plasticity, enable the richest variety of synaptic dynamics to occur. In particular, we predict a zone in parameter space which may allow brains to attain the marginal stability phenomena observed experimentally, although additional regulatory mechanisms may be required to maintain these parameters.

92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
91E40 Memory and learning in psychology
Full Text: DOI
[1] Abouzeid, A., Ermentrout, B., 2011, Correlation transfer in stochastically driven neural oscillators over long and short time scales. Phys. Rev. E 84, 061914.
[2] Abbott, L. F.; Nelson, S. B., Synaptic plasticity: taming the beast, Nat. Neurosci., 3, 1178-1183, (2000)
[3] Bertschinger, N.; Natschlager, T., Real-time computation at the edge of chaos in recurrent neural networks, Neural Comput., 16, 1413-1436, (2004) · Zbl 1102.68530
[4] Beurle, R. L., Properties of a mass of cells capable of regenerating pulses, Philos. Trans. R. Soc. B, 240, 55-94, (1956)
[5] Bi, G.; Poo, M., Synaptic modification by correlated Activityhebb’s postulate revisited, Annu. Rev. Neurosci., 24, 139-166, (2001)
[6] Bojak, I.; Liley, D. T.J., Axonal velocity distributions in neural field equations, PLoS Biol., 6, e1000653, (2010)
[7] Breakspear, M.; Roberts, J. A.; Terry, J. R.; Rodrigues, S.; Mahant, N.; Robinson, P. A., A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis, Cereb. Cortex, 16, 1296-1313, (2006)
[8] Bressloff, P. C.; Cowan, J. D., SO3 symmetry breaking mechanism for orientation and spatial frequency tuning in the visual cortex, Phys. Rev. Lett., 88, 78-102, (2002)
[9] Burkitt, A. N.; Meffin, H.; Grayden, D. B., Spike-timing-dependent plasticitythe relationship to rate-based learning for models with weight dynamics determined by a stable fixed point, Neural Comput., 16, 885-940, (2004) · Zbl 1054.92007
[10] Buzsaki, G.; Draguhn, A., Neuronal oscillations in cortical networks, Science, 304, (2004)
[11] Chistyakov, A. V.; Kaplan, B.; Rubichek, O.; Kreinin, I.; Koren, D.; Hafner, H.; Feinsod, M.; Klein, E., Effect of electroconvulsive therapy on cortical excitability in patients with major depressiona transcranial magnetic stimulation study, Clin. Neurophysiol., 116, 386-392, (2005)
[12] Coombes, S., Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93, 91, (2005) · Zbl 1116.92012
[13] Coombes, S., Modeling electrocortical activity through improved local approximations of integral neural field equations, Phys. Rev. E, 76, 051901, (2007)
[14] Coombes, S.; Lord, G. J.; Owen, M. R., Waves and bumps in neuronal networks with axo-dendritic synaptic interactions, Physica D, 178, 219-241, (2003) · Zbl 1013.92006
[15] Dan, Y.; Poo, M. M., Spike timing-dependent plasticityfrom synapse to perception, Physiol. Rev., 86, 1033-1048, (2006)
[16] Dayan, P.; Abbott, L., Theoretical neuroscience, (2001), MIT Cambridge · Zbl 1051.92010
[17] Deco, G.; Jirsa, V. K.; Robinson, P. A.; Breakspear, M.; Friston, K., The dynamic brainfrom spiking neurons to neural masses and cortical fields, PLoS-Comput. Biol., 4, e1000092, (2008)
[18] D’Souza, P.; Liu, S.-C.; Hahnloser, R. H.R., Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity, Proc. Natl. Acad. Sci. USA, 107, 10, 4722-4727, (2010)
[19] Engel, A. K.; Fries, P.; Singer, W., Dynamics predictionsoscillations and synchrony in top-down processing, Nat. Rev., 2, 704-716, (2001)
[20] Engel, A. K.; Roelfsema, P. R.; Fries, M. P., Role of the temporal domain for response selection and perceptual binding, Cereb. Cortex, 571-582, (1997)
[21] Ermentrout, B., Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61, 4, 353, (1998)
[22] Freeman, W. J., Mass action in the nervous system, (1975), Academic New York
[23] Fries, P., A mechanism for cognitive dynamicsneuronal communication through neuronal coherence, Trends Cognitive Sci., 9, 474-480, (2005)
[24] Froemke, R. C.; Dan, Y., Spike-timing-dependent synaptic modification induced by natural spike trains, Nature, 416, 433-438, (2002)
[25] Froemke, R. C.; Poo, M. M.; Dan, Y., Spike-timing-dependent synaptic plasticity depends on dendritic location, Nature, 434, 221-225, (2005)
[26] Gutig, R.; Aharonov, R.; Rotter, S.; Sompolinsky, H., Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity, J. Neurosci., 23, 3697-3714, (2003)
[27] Hebb, D. O., The organization of behaviora neuropsychological theory, (1949), Wiley New York
[28] Iglesias, J.; Eriksson, J.; Grize, F.; Tomassini, M.; Villa, A. E.P., Dynamics of pruning in simulated large-scale spiking neural networks, BioSystems, 79, 11-20, (2005)
[29] Izhikevich, E. M., Polychronizationcomputation with spikes, Neural Comput., 18, 245-282, (2006) · Zbl 1090.92006
[30] Jirsa, V. K.; Haken, H., Field theory of electromagnetic brain activity, Phys. Rev. Lett., 77, 960-963, (1996)
[31] Kandel, E. R.; Schwartz, J. H.; Jessell, T. M., Principles of neural science, (2000), McGraw-Hill New York
[32] Kato, N., Neurophysiological mechanisms of electroconvulsive therapy for depression, Neurosci. Res., 64, 3-11, (2009)
[33] Kempter, R.; Gerstner, W.; van Hemmen, J. L., Hebbian learning and spiking neurons, Phys. Rev. E, 59, 4498-4514, (1999)
[34] Kempter, R.; Gerstner, W.; van Hemmen, J. L., Intrinsic stabilization of output rates by spike-based Hebbian learning, Neural Comput., 13, 2709-2741, (2001) · Zbl 0996.92001
[35] Kim, J. W.; Roberts, J. A.; Robinson, P. A., Dynamics of epileptic seizuresevolution, spreading, and suppression, J. Theor. Biol., 257, 527-532, (2009) · Zbl 1400.92266
[36] Koch, C., Biophysics of computation, (1999), Oxford University Press Oxford
[37] Letzkus, J. J.; Kampa, B. M.; Stuart, G. J., Does spike timing-dependent synaptic plasticity underlie memory formation?, Clin. Exp. Pharmacol. Physiol., 34, 1070-1076, (2007)
[38] Lopes da Silva, F. H.; Hoeks, A.; Smits, H.; Zetterberg, L. H., Model of brain rhythmic activity. the alpha-rhythm of the thalamus, kybernetik, 15, 27-37, (1974)
[39] Maier, D. L.; Grieb, G. M.; Stelzner, D. J.; McCasland, J. S., Large-scale plasticity in barrel cortex following repeated whisker trimming in Young adult hamsters, Exp. Neurol., 184, 737-745, (2003)
[40] Markram, H.; Gerstner, W.; Sjostrom, P. J., A history of spike-timing-dependent plasticity, Front. Comput. Neurosci., 3, (2011)
[41] Nunez, P. L., Wavelike properties of the alpha rhythm, IEEE Trans. Biomed. Eng., 21, 473-482, (1974)
[42] Nunez, P. L., Neocortical dynamics and human EEG rhythms, (1995), Oxford USA
[43] O’Connor, S. C.; Robinson, P. A., Unifying and interpreting the spectral wavenumber content of EEGs, ecogs, and erps, J. Theor. Biol., 231, 386-412, (2004)
[44] Pinto, D. J.; Ermentrout, G. B., Spatially structured activity in synaptically coupled neuronal networksii. lateral inhibition and standing pulses, SIAM J. Appl. Math., 62, 1, 226-243, (2001) · Zbl 1070.92506
[45] Roberts, P. D.; Bell, C. C., Spike timing dependent synaptic plasticity in biological systems, Biol. Cybern., 87, 392-403, (2002) · Zbl 1105.92327
[46] Robinson, P. A., Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals, J. Theor. Biol., 222, 163-175, (2003)
[47] Robinson, P. A., Propagator theory of brain dynamics, Phys. Rev. E, 72, 011904, (2005)
[48] Robinson, P. A., Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations, Phys. Rev. E, 73, 041904, (2006)
[49] Robinson, P. A., Visual gamma oscillationswaves, correlations, and other phenomena, including comparison with experimental data, Biol. Cybern., 97, 317-335, (2007) · Zbl 1127.92010
[50] Robinson, P. A., Protein stability and aggregation in Parkinson’s disease, Biochem. J., 413, 1-13, (2008)
[51] Robinson, P. A., Neural field theory of synaptic plasticity, J. Theor. Biol., 285, 156-163, (2011) · Zbl 1397.92121
[52] Robinson, P. A.; Chen, P. C.; Yang, L., Physiologically based calculation of steady-state evoked potentials and cortical wave velocities, Biol. Cybern., 98, 1-10, (2008) · Zbl 1149.92309
[53] Robinson, P. A.; Kim, J. W., Spike, rate, field, and hybrid methods for treating neuronal dynamics and interactions, Comput. Neurosci., 205, 283-294, (2012)
[54] Robinson, P. A.; Loxley, P. N.; O’Connor, S. C.; Rennie, C. J., Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials, Phys. Rev. E, 63, 041909, (2001)
[55] Robinson, P. A.; Rennie, C. J.; Rowe, D. L., Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Phys. Rev. E, 65, 041924, (2002)
[56] Robinson, P. A.; Rennie, C. J.; Rowe, D. L.; O’Connor, S. C., Estimation of multiscale neurophysiologic parameters by electroencephalographic means, Hum. Brain Mapping, 23, 53-72, (2004)
[57] Robinson, P. A.; Rennie, C. J.; Rowe, D. L.; O’Connor, S. C.; Gordon, E., Multiscale brain modelling, Philos. Trans. R. Soc. London B, 360, 1043-1050, (2005)
[58] Robinson, P. A.; Rennie, C. J.; Wright, J., Propagation and stability of waves of electrical activity in the cortex, Phys. Rev. E, 56, 826-840, (1997)
[59] Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bahramall, H., Prediction of electroencephalographic spectra from neurophysiology, Phys. Rev. E, 63, 021903, (2001)
[60] Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bourke, P. D., Steady states and global dynamics of electrical activity in the cerebral cortex, Phys. Rev. E, 58, 3557-3571, (1998)
[61] Ruan, Y., Zhao, G., 2009. Comparison and regulation of neuronal synchronization for various STDP rules. Neural Plast. 704075, 10.1155/2009/704075.
[62] Rubino, D.; Robbins, K. A.; Hatsopoulos, N. G., Propagating waves mediate information transfer in the motor cortex, Nat. Neurosci., 9, 1549-1557, (2006)
[63] Salinas, F. S.; Lancaster, J. L.; Fox, P. T., Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils, Phys. Med. Biol., 52, 2879-2892, (2007)
[64] Schiff, S. J.; Huang, X.; Wu, J. Y., Dynamical evolution of spatiotemporal patterns in Mammalian middle cortex, Phys. Rev. Lett., 98, 178102, (2007)
[65] Seitz, R. J.; Huang, Y.; Knorr, U.; Tellmann, L.; Herzog, H.; Freund, H. J., Large-scale plasticity of the human motor cortex, Neuroreport, 6, 742-744, (1995)
[66] Sejnowski, T. J., The book of hebb, Neuron, 24, 773-776, (1999)
[67] Singer, W.; Gray, C., Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci., 18, 555-586, (1995)
[68] Skarda, C. A.; Freeman, W. J., How brains make chaos in order to make sense of the world, Behav. Brain Sci., 10, 161-195, (1987)
[69] Song, S.; Miller, K. D.; Abbott, L., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity, Nat. Neurosci., 3, 919-926, (2000)
[70] Steyn-Ross, M. L.; Steyn-Ross, D. A.; Sleigh, M. T.; Wilcocks, L. C., Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex, Phys. Rev. E, 72, 061910, (2005)
[71] Steyn-Ross, M. L.; Steyn-Ross, D. A.; Sligh, J. W.; Liley, D. T.J., Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortexevidence for a general anesthetic-induced phase transition, Phys. Rev. E, 60, 7299-7311, (1999)
[72] Sugita, Y., Global plasticity in adult visual cortex following reversal of visual input, Nature, 380, 523-526, (1996)
[73] Thickbroom, G. W., Transcranial magnetic stimulation and synaptic plasticityexperimental framework and human models, Exp. Brain Res., 180, 583-593, (2007)
[74] Uhlhass, P.; Pipa, G.; Lima, B.; Melloni, L.; Neuenschwander, S.; Nikolic, D.; Singer, W., Neural synchrony in cortical networkshistory, concept and current status, Front. Integr. Neurosci., 3, 1-19, (2009)
[75] van Albada, S. J.; Gray, R. T.; Drysdale, P. M.; Robinson, P. A., Mean-field modeling of the basal ganglia-thalamocortical system. II dynamics of Parkinsonian oscillations, J. Theor. Biol., 257, 664-688, (2009) · Zbl 1400.92129
[76] van Albada, S. J.; Robinson, P. A., Mean-field modeling of the basal ganglia-thalamocortical system. I firing rates in healthy and Parkinsonian states, J. Theor. Biol., 257, 642-663, (2009) · Zbl 1400.92130
[77] van Rossum, M. C.; Bi, G. Q.; Turrigiano, G. G., Stable Hebbian learning from spike timing-dependent plasticity, J. Neurosci., 20, 8812-8821, (2000)
[78] von Stein, A.; Sarnthein, J., Different frequencies for different scales of cortical integrationfrom local gamma to long range alpha/theta synchronization, Int. J. Psychophysiol., 38, 301-313, (2000)
[79] (Wasserman, E. M.; Epstein, C. M.; Ziemann, U.; Walsh, V.; Paus, T.; Lisanby, S. H., The Oxford Handbook of Transcranial Stimulation, (2008), Oxford University Press Oxford)
[80] Wespatat, V.; Tennigkeit, F.; Singer, W., Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex, J. Neurosci., 41, 9067-9075, (2004)
[81] Wilson, H. R.; Cowan, J. D., A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80, (1973) · Zbl 0281.92003
[82] Wittenberg, G. M.; Wang, S. S.-H., Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse, J. Neurosci., 24, 6610-6617, (2006)
[83] Wright, J. J.; Liley, D. T.J., Dynamics of the brain at global and microscopic scalesneural networks and the EEG, Behav. Brain Sci., 19, 285-320, (1996)
[84] Xu, W.; Huang, X.; Takagaki, K.; Wu, J. Y., Compression and reflection of visually evoked cortical waves, Neuron, 55, 119-129, (2007)
[85] Zhigulin, V. P., Robustness and enhancement of neural synchronization by activity-dependent coupling, Phys. Rev. E, 67, 021901, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.