zbMATH — the first resource for mathematics

Welfare and revenue guarantees for competitive bundling equilibrium. (English) Zbl 1406.91144
Markakis, Evangelos (ed.) et al., Web and internet economics. 11th international conference, WINE 2015, Amsterdam, The Netherlands, December 9–12, 2015. Proceedings. Berlin: Springer (ISBN 978-3-662-48994-9/pbk; 978-3-662-48995-6/ebook). Lecture Notes in Computer Science 9470, 300-313 (2015).
Summary: Competitive equilibrium, the central equilibrium notion in markets with indivisible goods, is based on pricing each good such that the demand for goods equals their supply and the market clears. This equilibrium notion is not guaranteed to exist beyond the narrow case of substitute goods, might result in zero revenue even when consumers value the goods highly, and overlooks the widespread practice of pricing bundles rather than individual goods. Alternative equilibrium notions proposed to address these shortcomings have either made a strong assumption on the ability to withhold supply in equilibrium, or have allowed an exponential number of prices.
In this paper, we study the notion of competitive bundling equilibrium - a competitive equilibrium over the market induced by partitioning the goods into bundles. Such an equilibrium is guaranteed to exist, is succinct, and satisfies the fundamental economic condition of market clearance. We establish positive welfare and revenue guarantees for this solution concept: For welfare we show that in markets with homogeneous goods, there always exists a competitive bundling equilibrium that achieves a logarithmic fraction of the optimal welfare. We also extend this result to establish nontrivial welfare guarantees for markets with heterogeneous goods. For revenue we show that in a natural class of markets for which competitive equilibrium does not guarantee positive revenue, there always exists a competitive bundling equilibrium that extracts as revenue a logarithmic fraction of the optimal welfare. Both results are tight.
For the entire collection see [Zbl 1326.68026].

91B24 Microeconomic theory (price theory and economic markets)
Full Text: DOI
[1] Ausubel, L., Milgrom, P.: Ascending auctions with package bidding. B.E. J. Theoret. Econ. 1(1), 1–44 (2002)
[2] Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ. Rev. 94, 1452–1475 (2004) · doi:10.1257/0002828043052330
[3] Bikhchandani, S., Ostroy, J.M.: The package assignment model. J. Econ. Theory 107, 377–406 (2002) · Zbl 1033.90064 · doi:10.1006/jeth.2001.2957
[4] Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: Proceedings of 7th ACM Conference on Electronic Commerce (EC) (2005) · doi:10.1145/1064009.1064014
[5] Coase, R.H.: Durability and monopoly. J. Law Econ. 15(1), 143–149 (1972) · doi:10.1086/466731
[6] Dobzinski, S., Feldman, M., Talgam-Cohen, I., Weinstein, O.: Welfare and revenue guarantees for competitive bundling equilibrium. CoRR abs/1406.0576 (2014). http://arxiv.org/abs/1406.0576 · Zbl 1406.91144
[7] Dobzinski, S., Nisan, N.: Mechanisms for multi-unit auctions. J. Artif. Intell. Res. 37, 85–98 (2010) · Zbl 1188.91079
[8] Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In: Proceedings of 44th ACM Symposium on Theory of Computing (STOC), pp. 61–70 (2013) · Zbl 1293.91082 · doi:10.1145/2488608.2488617
[9] Feldman, M., Lucier, B.: Clearing markets via bundles. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 158–169. Springer, Heidelberg (2014) · Zbl 1403.91209 · doi:10.1007/978-3-662-44803-8_14
[10] Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87(1), 95–124 (1999) · Zbl 0998.91010 · doi:10.1006/jeth.1999.2531
[11] Lahaie, S., Parkes, D.C.: Fair package assignment. In: Das, S., Ostrovsky, M., Pennock, D., Szymanksi, B. (eds.) AMMA 2009. LNICST, vol. 14, pp. 92–92. Springer, Heidelberg (2009) · doi:10.1007/978-3-642-03821-1_14
[12] Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006) · Zbl 1125.91043 · doi:10.1016/j.geb.2005.02.006
[13] Manelli, A.M., Vincent, D.R.: Bundling as an optimal selling mechanism for a multiple-good monopolist. J. Econ. Theory 127, 1–35 (2006) · Zbl 1122.91032 · doi:10.1016/j.jet.2005.08.007
[14] Mas-Collel, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)
[15] Maskin, E., Riley, J.: Optimal multi-unit auctions. In: Hahn, F. (ed.) The Economics of Missing Markets, Information, and Games, pp. 312–335. Oxford University Press, Oxford (1989)
[16] Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press, Cambridge (2004) · doi:10.1017/CBO9780511813825
[17] Nisan, N.: Survey: algorithmic mechanism design (through the lens of multi-unit auctions). In: Young, P., Zamir, S. (eds.) Handbook of Game Theory, vol. 4, chap. 9. Elsevier, Amsterdam (2014)
[18] Parkes, D.: Iterative combinatorial auctions. In: Cramton, P., Shoham, Y., Steinberg, R. (eds.) Combinatorial Auctions, chap. 2. MIT Press, Cambridge (2006)
[19] Parkes, D.C.: iBundle: an efficient ascending price bundle auction. In: Proceedings of 1st ACM Conference on Electronic Commerce (EC), pp. 148–157 (1999) · doi:10.1145/336992.337032
[20] Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: theory and practice. In: Proceedings of the 17th National Conference on Artificial Intelligence, AAAI 2000, pp. 74–81 (2000)
[21] Parkes, D.C., Ungar, L.H.: An ascending-price generalized Vickrey auction. In: Proceedings of Stanford Institute for Theoretical Economics Workshop on The Economics of the Internet, Stanford, CA (2002)
[22] Sun, N., Yang, Z.: An efficient and incentive compatible dynamic auction for multiple complements. J. Polit. Econ. (2014, to appear) · doi:10.1086/674550
[23] Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16, 8–37 (1961) · doi:10.1111/j.1540-6261.1961.tb02789.x
[24] Vohra, R.V.: Mechanism Design: A Linear Programming Approach (Econometric Society Monographs). Cambridge University Press, Cambridge (2011) · Zbl 1233.91004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.