×

zbMATH — the first resource for mathematics

Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. (English) Zbl 1406.76023
Summary: In this work, we combine (i) NURBS-based isogeometric analysis, (ii) residual-driven turbulence modeling and iii) weak imposition of no-slip and no-penetration Dirichlet boundary conditions on unstretched meshes to compute wall-bounded turbulent flows. While the first two ingredients were shown to be successful for turbulence computations at medium-to-high Reynolds number [I. Akkerman et al., Comput. Mech. 41, No. 3, 371–378 (2008; Zbl 1162.76355); Y. Bazilevs et al., Comput. Methods Appl. Mech. Eng. 197, No. 1–4, 173–201 (2007; Zbl 1169.76352)], it is the weak imposition of no-slip boundary conditions on coarse uniform meshes that maintains the good performance of the proposed methodology at higher Reynolds number [Y. Bazilevs and T. J. R. Hughes, Comput. Fluids 36, No. 1, 12–26 (2007; Zbl 1115.76040); Y. Bazilevs et al., Comput. Methods Appl. Mech. Eng. 196, No. 49–52, 4853–4862 (2007; Zbl 1173.76397)]. These three ingredients form a basis of a possible practical strategy for computing engineering flows, somewhere between RANS and LES in complexity. We demonstrate this by solving two challenging incompressible turbulent benchmark problems: channel flow at friction-velocity Reynolds number 2003 and flow in a planar asymmetric diffuser. We observe good agreement between our calculations of mean flow quantities and both reference computations and experimental data. This lends some credence to the proposed approach, which we believe may become a viable engineering tool.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F40 Turbulent boundary layers
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
LAPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[2] Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. numer. anal., 39, 1749-1779, (2002) · Zbl 1008.65080
[3] Y. Bazilevs, Isogeometric Analysis of Turbulence and Fluid-Structure Interaction, Ph.D. thesis, ICES, UT Austin, 2006.
[4] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[5] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. methods appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[6] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J.A.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes, Math. models methods appl. sci., 16, 1031-1090, (2006) · Zbl 1103.65113
[7] Bazilevs, Y.; Hughes, T.J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. fluids, 36, 12-26, (2007) · Zbl 1115.76040
[8] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. methods appl. mech. engrg., 196, 4853-4862, (2007) · Zbl 1173.76397
[9] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[10] Buice, C.U.; Eaton, J.K., Experimental investigation of flow through an asymmetric plane diffuser, Thermosciences division report 107 department of mechanical engineering, (1997), Stanford University
[11] V.M. Calo, Residual-based Multiscale Turbulence Modeling: Finite Volume Simulation of Bypass Transistion, PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004.
[12] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[13] Codina, R., On stabilized finite element methods for linear systems of convection – diffusion – reaction equations, Comput. methods appl. mech. engrg., 188, 61-82, (2000) · Zbl 0973.76041
[14] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5297, (2006) · Zbl 1119.74024
[15] Ferencz, R.M.; Hughes, T.J.R., Iterative finite element solutions in nonlinear solid mechanics, (), 3-178 · Zbl 0930.74058
[16] Gravemeier, V., The variational multiscale method for laminar and turbulent flow, Arch. comput. methods engrg. - state art rev., 13, 249-324, (2006) · Zbl 1177.76341
[17] Gravemeier, V., Variational multiscale large eddy simulation of turbulent flow in a diffuser, Comput. mech., 39, 477-495, (2007) · Zbl 1160.76022
[18] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), Wiley New York, NY · Zbl 0941.76002
[19] Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N., Sensitivity of the scale partition for variational multiscale LES of channel flow, Phys. fluids, 16, 3, 824-827, (2004) · Zbl 1186.76234
[20] Hoyas, S.; Jiménez, J., Scaling of the velocity fluctuations in turbulent channels up to \(\operatorname{Re}_\tau = 2003\), Phys. fluids, 18, (2006)
[21] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY
[22] Hughes, T.J.R.; Calo, V.M.; Scovazzi, G., Variational and multiscale methods in turbulence, () · Zbl 1323.76032
[23] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[24] Hughes, T.J.R.; Mallet, M., A new finite element formulation for fluid dynamics: III. the generalized streamline operator for multidimensional advective – diffusive systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[25] Hughes, T.J.R.; Mazzei, L.; Jansen, K.E., Large-eddy simulation and the variational multiscale method, Comput. visual. sci., 3, 47-59, (2000) · Zbl 0998.76040
[26] Hughes, T.J.R.; Mazzei, L.; Oberai, A.A.; Wray, A.A., The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence, Phys. fluids, 13, 2, 505-512, (2001) · Zbl 1184.76236
[27] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., Large-eddy simulation of turbulent channel flows by the variational multiscale method, Phys. fluids, 13, 6, 1784-1799, (2001) · Zbl 1184.76237
[28] Hughes, T.J.R.; Scovazzi, G.; Franca, L.P., Multiscale and stabilized methods, (), (Chapter 2)
[29] Hughes, T.J.R.; Wells, G.N.; Wray, A.A., Energy transfers and spectral eddy viscosity of homogeneous isotropic turbulence: comparison of dynamic smagorinsky and multiscale models over a range of discretizations, Phys. fluids, 16, 4044-4052, (2004) · Zbl 1187.76226
[30] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-\(\alpha\) method for integrating the filtered navier – stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (1999) · Zbl 0973.76048
[31] K.E. Jansen and A.E. Tejada-Martinez, An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis, in: AIAA Paper 2002-0283, 2002.
[32] Kaltenbach, H.-J.; Fatica, M.; Mittal, R.; Lund, T.S.; Moin, P., Study of flow in a planar asymmetric diffuser using large-eddy simulation, J. fluid mech., 390, 151-185, (1999) · Zbl 0983.76042
[33] Koobus, B.; Farhat, C., A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes – application to vortex shedding, Comput. methods appl. mech. engrg., 193, 1367-1383, (2004) · Zbl 1079.76567
[34] Kravchenko, A.G.; Moin, P.; Moser, R., Zonal embedded grids for numerical simulation of wall-bounded turbulent flows, J. comput. phys., 127, 412-423, (1996) · Zbl 0862.76062
[35] Kravchenko, A.G.; Moin, P.; Shariff, K., B-spline method and zonal grids for simulation of complex turbulent flows, J. comput. phys., 151, 757-789, (1999) · Zbl 0942.76058
[36] Kwok, W.Y.; Moser, R.D.; Jiménez, J., A critical evaluation of the resolution properties of B-spline and compact finite difference methods, J. comput. phys., 174, 510-551, (2001) · Zbl 0995.65089
[37] Linear Algebra Package (LAPACK). <http://www.netlib.org/lapack/>. · Zbl 0954.65023
[38] Manguoglu, M.; Sameh, A.H.; Tezduyar, T.E.; Sathe, S., A nested iterative scheme for computation of incompressible flows in long domains, Comput. mech., (2008), Published online · Zbl 1279.76024
[39] Moser, R.; Kim, J.; Mansour, R., DNS of turbulent channel flow up to re=590. physics of fluids, 11, 943-945, (1999) · Zbl 1147.76463
[40] A.A. Oberai and T.J.R. Hughes, The variational multiscale formulation of LES: channel flow at \(\mathit{Re}_\tau = 590\), 40th AIAA Ann. Mtg., Reno, NV, 2002. AIAA 2002-1056.
[41] S. Obi, K. Aoki, and S. Masuda Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser, Ninth symposium on turbulent shear flows, Kyoto, Japan, August 16-19, 1993.
[42] Ramakrishnan, S.; Collis, S.S., Partition selection in multiscale turbulence modeling, Phys. fluids, 18, 7, (2006) · Zbl 1185.76728
[43] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM Philadelphia · Zbl 1002.65042
[44] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[45] Shakib, F.; Hughes, T.J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and navier – stokes equations, Comput. methods appl. mech. engrg., 89, 141-219, (1991) · Zbl 0838.76040
[46] Shariff, K.; Moser, R.D., Two-dimensional mesh embedding for B-spline methods, J. comput. phys., 145, 471-488, (1998) · Zbl 0910.65083
[47] Spalart, P.R.; Jou, W.H.; Stretlets, M.; Allmaras, S.R., Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach, Advances in DNS/LES, (1997), Greyden Press Columbus
[48] Spalding, D.B., A single formula for the law of the wall, J. appl. mech., 28, 444-458, (1961) · Zbl 0098.17603
[49] Texas Advanced Computing Center (TACC). <http://www.tacc.utexas.edu>.
[50] Tezduyar, T.E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. numer. methods fluids, 43, 555-575, (2003) · Zbl 1032.76605
[51] Wheeler, M.F., An elliptic collocation-finite element method with interior penalties, SIAM J. numer. anal., 15, 152-161, (1978) · Zbl 0384.65058
[52] Wu, X.; Schlutter, J.; Moin, P.; Pitsch, H.; Iaccarino, G.; Ham, F., Computational study on the internal layer in a diffuser, J. fluid mech., 550, 391-412, (2006) · Zbl 1222.76062
[53] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. methods appl. mech. engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.