×

zbMATH — the first resource for mathematics

Chebyshev collocation method for the free vibration analysis of geometrically exact beams with fully intrinsic formulation. (English) Zbl 1406.74304
Summary: A Chebyshev collocation method is presented for the free vibration analysis of geometrically exact nonlinear beams with fully intrinsic formulation. The intrinsic formulation of the governing equations of the beam contains neither displacement nor rotation variables. The proposed collocation discretization technique is based on the Chebyshev points as the collocation points and the orthogonal Chebyshev polynomials as the trial functions. This method is successfully applied to the eigenvalue analysis of the linearized intrinsic governing equations of a nonlinear beam. A number of test cases have been considered for either straight or pretwisted beams and the obtained results are compared to the analytical, numerical as well as experimental results. In order to show the applicability of current approach for real-life engineering problems, a composite wind turbine rotor blade with non-uniform distribution of properties is also considered. In all test cases a very good concordance has been observed. The proposed method bypasses the integrations common in finite element based methods and difficulties associated with finite rotations interpolation and while exhibiting a very good accuracy compared to the finite element results, it is computationally more efficient and simpler to implement in a computer programming code.

MSC:
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S25 Spectral and related methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banerjee, J. R., Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam, J. Sound Vib., 270, 379-401, (2004) · Zbl 1236.74139
[2] Cardona, A.; Géradin, M., A beam finite element non-linear theory with finite rotations, Int. J. Numer. Methods Eng., 26, 2403-2438, (1988) · Zbl 0662.73049
[3] Carnegie, W., Vibrations of pre-twisted cantilever blading, Proc. Institution Mech. Eng., 173, 343-374, (1959)
[4] Chang, C. S.; Hodges, D. H., Stability studies for curved beams, J. Mech. Mater. Struct., 4, 1257-1270, (2009)
[5] Chang, C. S.; Hodges, D. H., Vibration characteristics of curved beams, J. Mech. Mater. Struct., 4, 675-692, (2009)
[6] Dowell, E. H.; Traybar, J. J., An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag and twist deformations, (1975), AMS Report No. 1194
[7] Genoese, A.; Genoese, A.; Bilotta, A.; Garcea, G., A generalized model for heterogeneous and anisotropic beams including section distortions, Thin-Walled Struct., 74, 85-103, (2014)
[8] Ghorashi, M.; Nitzsche, F., Nonlinear dynamic response of an accelerating composite rotor blade using perturbations, J. Mech. Mater. Struct., 4, 693-718, (2009)
[9] Griffith, D. T.; Ashwill, T. D., The sandia 100-meter all-Glass baseline wind turbine blade: snl100-00, (2011), Sandia National Laboratories Albuquerque, Report No. SAND2011-3779
[10] Hegemier, G.; Nair, S., A nonlinear dynamical theory for heterogeneous, anisotropic, elasticrods, AIAA J., 15, 8-15, (1977) · Zbl 0356.73046
[11] Hodges, D. H., A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams, Int. J. Solids Struct., 26, 1253-1273, (1990) · Zbl 0717.73095
[12] Hodges, D. H., Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams, AIAA J., 41, 1131-1137, (2003)
[13] Hodges, D. H., Nonlinear composite beam theory, (2006), AIAA Reston, VA
[14] Ibrahimbegović, A.; Mikdad, M. A., Finite rotations in dynamics of beams and implicit time-stepping schemes, Int. J. Numer. Methods Eng., 41, 781-814, (1998) · Zbl 0902.73045
[15] Iura, M.; Atluri, S. N., On a consistent theory, and variational formulation of finitely stretched and rotated 3-d space-curved beams, Comput. Mech., 4, 73-88, (1988) · Zbl 0666.73015
[16] Jelenić, G.; Crisfield, M. A., Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics, Comput. Methods Appl. Mech. Eng., 171, 141-171, (1999) · Zbl 0962.74060
[17] Jeong, M. S.; Kim, S. W.; Lee, I.; Yoo, S. J.; Park, K. C., Investigation of wake effects on aeroelastic responses of horizontal-axis wind-turbines, AIAA J., 52, 1133-1144, (2014)
[18] Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G., Definition of a 5-mw reference wind turbine for offshore system development, (2009), National Renewable Energy Laboratory Golden, CO, Technical Report No. NREL/TP-500-38060
[19] Khaneh Masjedi, P.; Ovesy, H. R., Chebyshev collocation method for static intrinsic equations of geometrically exact beams, Int. J. Solids Struct., 54, 183-191, (2015)
[20] Khouli, F.; Afagh, F. F.; Langlois, R. G., Application of the first order generalized-α method to the solution of an intrinsic geometrically exact model of rotor blade systems, J. Comput. Nonlinear Dyn., 4, 011006, (2009)
[21] Khouli, F.; Griffiths, J.; Afagh, F.; Langlois, R., Actuation of slender thin-wall anisotropic open cross-section beams based on asymptotically correct Vlasov theory, J. Intelligent Material Syst. Struct., 21, 529-540, (2010)
[22] Kim, H. S.; Kim, J. S., A rankine-timonshenko-Vlasov beam theory for anisotropic beams via an asymptotic strain energy transformation, Eur. J. Mechanics-A/Solids, 40, 131-138, (2013) · Zbl 1406.74386
[23] Kim, J. S.; Cho, M.; Smith, E. C., An asymptotic analysis of composite beams with kinematically corrected end effects, Int. J. Solids Struct., 45, 1954-1977, (2008) · Zbl 1152.74027
[24] Mäkinen, J., Total Lagrangian Reissner’s geometrically exact beam element without singularities, Int. J. Numer. Methods Eng., 70, 1009-1048, (2007) · Zbl 1194.74441
[25] Mason, J. C.; Handscomb, D. C., Chebyshev polynomials, (2003), CRC Press LLC · Zbl 1015.33001
[26] Meirovitch, L., Principles and techniques of vibrations, (1997), Prentice Hall New Jersey
[27] Morandini, M.; Chierichetti, M.; Mantegazza, P., Characteristic behavior of prismatic anisotropic beam via generalized eigenvectors, Int. J. Solids Struct., 47, 1327-1337, (2010) · Zbl 1193.74079
[28] Pai, P. F.; Nayfeh, A. H., A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects, Int. J. Solids Struct., 31, 1309-1340, (1994) · Zbl 0945.74628
[29] Patil, M. J.; Althoff, M., Energy-consistent, Galerkin approach for the nonlinear dynamics of beams using intrinsic equations, J. Vib. Control, 17, 1748-1758, (2011) · Zbl 1271.74115
[30] Patil, M. J.; Hodges, D. H., Variable-order finite elements for nonlinear, fully intrinsic beam equations, J. Mech. Mater. Struct., 6, 479-493, (2011)
[31] Patil, M. J.; Hodges, D. H.; Cesnik, C. E.S., Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft, (40th Structures, Structural Dynamics, and Materials Conference and Exhibit, (1999))
[32] Petrov, E.; Géradin, M., Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids part 1: beam concept and geometrically exact nonlinear formulation, Comput. Methods Appl. Mech. Eng., 165, 43-92, (1998) · Zbl 0952.74074
[33] Reissner, E., On one-dimensional large-displacement finite-strain beam theory, Stud. Appl. Math., 52, 87-95, (1973) · Zbl 0267.73032
[34] Resor, B. R., Definition of a 5mw/61.5 M wind turbine blade reference model, (2013), Sandia National Laboratories Albuquerque, New Mexico, USA, SAND2013-2569 2013
[35] Romero, I.; Armero, F., An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics, Int. J. Numer. Methods Eng., 54, 1683-1716, (2002) · Zbl 1098.74713
[36] Rosen, A.; Loewy, R. G.; Mathew, M. B., Use of twisted principal coordinates and nonphysical coordinates in blade analysis, Vertica, 11, 541-572, (1987)
[37] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J.R., Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical nurbs discretizations, Comput. Methods Appl. Mech. Eng., 267, 170-232, (2013) · Zbl 1286.65174
[38] Simo, J. C., A finite strain beam formulation. the three-dimensional dynamic problem. part i, Comput. Methods Appl. Mech. Eng., 49, 55-70, (1985) · Zbl 0583.73037
[39] Simo, J. C.; Vu-Quoc, L., On the dynamics in space of rods undergoing large motions a geometrically exact approach, Comput. Methods Appl. Mech. Eng., 66, 125-161, (1988) · Zbl 0618.73100
[40] Simo, J. C.; Vu-Quoc, L., A geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., 27, 371-393, (1991) · Zbl 0731.73029
[41] Tornabene, F.; Fantuzzi, N.; Ubertini, F.; Viola, E., Strong formulation finite element method based on differential quadrature: a survey, Appl. Mech. Rev., 67, 020801, (2015)
[42] Traugott, J. P.; Patil, M. J.; Holzapfel, F., Nonlinear modeling of integrally actuated beams, Aerosp. Sci. Technol., 10, 509-518, (2006) · Zbl 1195.74078
[43] Yeo, H.; Truong, K. V.; Ormiston, R. A., Comparison of one-dimensional and three-dimensional structural dynamics modeling of advanced geometry blades, J. Aircr., 51, 226-235, (2014)
[44] Yu, W.; Hodges, D. H.; Ho, J. C., Variational asymptotic beam sectional analysis-an updated version, Int. J. Eng. Sci., 59, 40-64, (2012) · Zbl 1423.74522
[45] Yu, W.; Hodges, D. H.; Volovoi, V. V.; Fuchs, E. D., A generalized Vlasov theory for composite beams, Thin-Walled Struct., 43, 1493-1511, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.