×

zbMATH — the first resource for mathematics

Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action. (English) Zbl 1406.74175
Summary: A new variational formulation is proposed for time-domain analysis of initial/boundary value problems of dynamic thermoelasticity. By using the concept of mixed convolved action, the difficulties with dissipative phenomena and proper representations of the temporal end point conditions can be overcome to create a true stationary variational principle. After an elementary illustrative development for a lumped parameter thermoelastic model, the convolved action functional for linear thermoelastic continuum is written directly in terms of mixed variables, which include displacements and the impulses of stress, temperature and heat flux. Unlike previous variational approaches, based for example upon a generalization of Hamilton’s principle, the present mixed convolved action formulation allows direct application of finite element methodology in both space and time. Here, simple linear shape functions are employed for the temporal representations. Meanwhile, standard three-noded triangular elements are used in the present two-dimensional numerical implementation. Several computational examples are considered to test this original approach and to investigate interesting aspects of coupled dynamic thermoelastic response.

MSC:
74F05 Thermal effects in solid mechanics
74B05 Classical linear elasticity
74A15 Thermodynamics in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apostolakis, G.; Dargush, G. F., Mixed Lagrangian formulation for linear thermoelastic response of structures, Journal of Engineering Mechanics, ASCE, 138, 508-518, (2012)
[2] Apostolakis, G.; Dargush, G. F., Mixed variational principles for dynamic response of thermoelastic and poroelastic continua, Int. J. Solid Struct., 50, 1253-1265, (2013)
[3] Bathe, K. J., Finite element procedures, (1996), Prentice Hall Englewood Cliffs, NJ
[4] Beris, A. N.; Edwards, B. J., Thermodynamics of flowing systems with internal microstructure, (1994), Oxford University Press New York, NY
[5] Biot, M. A., Variational principles in irreversible thermodynamics with application to viscoelasticity, Phys. Rev., 97, 1463-1469, (1955) · Zbl 0065.42003
[6] Biot, M. A., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253, (1956) · Zbl 0071.41204
[7] Biot, M. A., New thermomechanical reciprocity relations with application to thermal stress analysis, J. Aero. Sci., 26, 401-408, (1959) · Zbl 0092.18005
[8] Boley, B. A.; Weiner, J. H., Theory of thermal stresses, (1960), Wiley New York, NY · Zbl 0095.18407
[9] Brezis, H.; Ekeland, I., Un principe variationnel associe a certaines equations paraboliques. le case independent du temps, Comptes Rendus de l’Academie des Sciences Paris, 282, 971-974, (1976) · Zbl 0332.49032
[10] Buliga, M.; De Saxcé, G., A symplectic Brezis-Ekeland-nayroles principle, Math. Mech. Solid, 22, 1288-1302, (2017) · Zbl 1371.74051
[11] Chen, J.; Dargush, G. F., Boundary-element method for dynamic poroelastic and thermoelastic analyses, Int. J. Solid Struct., 32, 2257-2278, (1995) · Zbl 0869.73075
[12] Chen, P. J.; Gurtin, M. E., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19, 614-627, (1968) · Zbl 0159.15103
[13] Chester, M., Second sound in solids, Phys. Rev., 131, 2013-2015, (1963)
[14] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Camb. Phil. Soc., 43, 50-67, (1947) · Zbl 0029.05901
[15] Dargush, G. F.; Kim, J., Mixed convolved action, Phys. Rev. E, 85, 066606, (2012)
[16] Dargush, G. F., Mixed convolved action for classical and fractional-derivative dissipative dynamical systems, Phys. Rev. E, 86, 066606, (2012)
[17] Dargush, G. F.; Darrall, B. T.; Kim, J.; Apostolakis, G., Mixed convolved action principles in linear continuum dynamics, Acta Mech., 226, 4111-4137, (2015) · Zbl 1336.74013
[18] Dargush, G. F.; Apostolakis, G.; Darrall, B. T.; Kim, J., Mixed convolved action variational principles in heat diffusion, Int. J. Heat Mass Tran., 100, 790-799, (2016)
[19] De Saxcé, G.; Feng, Z. Q., The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms, Math. Comput. Model., 28, 225-245, (1998) · Zbl 1126.74341
[20] El-Karamany, A. S.; Ezzat, M. A., Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity, J. Therm. Stresses, 34, 264-284, (2011)
[21] Ezzat, M. A.; El-Karamany, A. S., The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci., 40, 1275-1284, (2012) · Zbl 1211.74067
[22] Gallagher, R. H.; Padlog, J.; Bijlaard, P. P., Stress analysis of complex heated shapes, ARS J., 32, 700-707, (1962) · Zbl 0124.41501
[23] Goldstein, H., Classical mechanics, (1950), Addison-Wesley Press Cambridge, MA
[24] Green, A. E.; Lindsay, K. E., Thermoelasticity, J. Elasticity, 2, 1-7, (1972) · Zbl 0775.73063
[25] Green, A. E.; Naghdi, P. M., On undamped heat waves in an elastic solid, J. Therm. Stresses, 15, 253-264, (1992)
[26] Green, A. E.; Naghdi, P. M., Thermoelasticity without energy dissipation, J. Elasticity, 31, 189-208, (1993) · Zbl 0784.73009
[27] Grmela, M., Bracket formulation of dissipative fluid mechanics equations, Phys. Lett., 102A, 355-358, (1984)
[28] Grmela, M., Contact geometry of mesoscopic thermodynamics and dynamics, Entropy, 16, 1652-1686, (2014)
[29] Grmela, M., Geometry of multiscale nonequilibrium thermodynamics, Entropy, 17, 5938-5964, (2015) · Zbl 1338.80005
[30] Grmela, M.; Ottinger, H. C., Dynamics and thermodynamics of complex fluids. I. development of a general formalism, Phys. Rev. E, 56, 6620-6632, (1997)
[31] Gurtin, M. E., Variational principles in the linear theory of viscoelasticity, Arch. Ration. Mech. Anal., 13, 179-191, (1963) · Zbl 0123.40803
[32] Gurtin, M. E., Variational principles for linear initial-value problems, Q. Appl. Math., 22, 3, 252-256, (1964) · Zbl 0173.37602
[33] Gurtin, M. E., Variational principles for linear elastodynamics, Arch. Ration. Mech. Anal., 16, 1, 34-50, (1964) · Zbl 0124.40001
[34] Halphen, B.; Nguyen Quoc, S., Sur LES matériaux standard généralisés, J. Mec., 14, 39-63, (1975) · Zbl 0308.73017
[35] Hamilton, W. R., On a general method in dynamics, Phil. Trans. Roy. Soc. Lond., 124, 247-308, (1834)
[36] Hamilton, W. R., Second essay on a general method in dynamics, Phil. Trans. Roy. Soc. Lond., 125, 95-144, (1835)
[37] Houlsby, G. T.; Puzrin, A. M., Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles, (2006), Springer London
[38] Ionescu-Casimer, V., Problem of linear coupled thermoelasticity. theorems of reciprocity for the dynamic problem of coupled thermoelasticity. I. bulletin de l’academie polonaise des sciences, Serie des Sciences Techniques, 12, 473-488, (1964)
[39] Joseph, D. D.; Perziosi, L., Heat waves, Rev. Mod. Phys., 61, 41-73, (1989) · Zbl 1129.80300
[40] Kane, C.; Marsden, J. E.; Ortiz, M., Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40, 3357-3371, (1999) · Zbl 0983.70014
[41] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems, Int. J. Numer. Meth. Eng., 49, 1295-1325, (2000) · Zbl 0969.70004
[42] Kaufman, A. N., Dissipative Hamiltonian systems: a unifying principle, Phys. Lett., 100A, 419-422, (1984)
[43] Lanczos, C., The variational principles of mechanics, (1949), University of Toronto Press Toronto · Zbl 0037.39901
[44] Lavan, O.; Sivaselvan, M. V.; Reinhorn, A. M.; Dargush, G. F., Progressive collapse analysis through strength degradation and fracture in the mixed Lagrangian formulation, Earthq. Eng. Struct. Dynam., 38, 1483-1504, (2009)
[45] Lavan, O., Dynamic analysis of gap closing and contact in the mixed Lagrangian framework: toward progressive collapse prediction, Journal of Engineering Mechanics, ASCE, 136, 979-986, (2010)
[46] Lord, H. W.; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solid., 15, 299-309, (1967) · Zbl 0156.22702
[47] Lotfian, Z.; Sivaselvan, M. V., A projected Newton algorithm for the dual convex program of elastoplasticity, Int. J. Numer. Meth. Eng., 97, 903-936, (2014) · Zbl 1352.74056
[48] Marsden, J. E.; Ratiu, T. S., Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, (1994), Springer-Verlag New York, NY · Zbl 0811.70002
[49] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514, (2001) · Zbl 1123.37327
[50] Morrison, P. J., Bracket formulation for irreversible classical fields, Phys. Lett., 100A, 423-427, (1984)
[51] Morse, P. M.; Feshbach, H., Methods of theoretical physics, (1953), McGraw-Hill New York, NY · Zbl 0051.40603
[52] Nayroles, M. B., Deux theoremes de minimum pour certains systemes dissipatifs, Comptes Rendus de l’Academie des Sciences Paris, 282, A1035-A1038, (1976)
[53] Nickell, R. E.; Sackman, J. L., Approximate solutions in linear, coupled thermoelasticity, J. Appl. Mech., 35, 255-266, (1968) · Zbl 0159.55605
[54] Nowacki, W., Thermoelasticity, (1986), Pergamon Press Warsaw · Zbl 0227.73009
[55] Oden, J. T.; Reddy, J. N., Variational methods in theoretical mechanics, (1983), Springer-Verlag Berlin · Zbl 0518.73010
[56] Ottinger, H. C.; Grmela, M., Dynamics and thermodynamics of complex fluids. II. illustrations of a general formalism, Phys. Rev. E, 56, 6633-6655, (1997)
[57] Prevost, J. H.; Tao, D., Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times, J. Appl. Mech., 50, 817-822, (1983) · Zbl 0527.73010
[58] Rayleigh, J. W.S., The theory of sound. I & II. second edition, reprint in 1945, (1877), Dover Publications New York, NY
[59] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53, 1890-1899, (1996)
[60] Riewe, F., Mechanics with fractional derivatives, Phys. Rev. E, 55, 3581-3592, (1997)
[61] Sherief, H. H.; El-Sayed, A. M.A.; Abd El-Latief, A. M., Fractional order theory of thermoelasticity, Int. J. Solid Struct., 47, 269-275, (2010) · Zbl 1183.74051
[62] Sivaselvan, M. V.; Reinhorn, A. M., Lagrangian approach to structural collapse simulation, Journal of Engineering Mechanics, ASCE, 132, 795-805, (2006)
[63] Sivaselvan, M. V.; Lavan, O.; Dargush, G. F.; Kurino, H.; Hyodo, Y.; Fukuda, R.; Sato, K.; Apostolakis, G.; Reinhorn, A. M., Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm, Earthq. Eng. Struct. Dynam., 38, 655-677, (2009)
[64] Tonti, E., On the variational formulation for linear initial value problems, Annali di Matematica Pura ed Applicata XCV, 331-360, (1973) · Zbl 0278.49047
[65] Tonti, E., Inverse problem: its general solution, (Rassias, G. M.; Rassias, T. M., Differential Geometry, Calculus of Variations and Their Applications, (1985), Marcel Dekker New York, NY) · Zbl 0583.49010
[66] Wilson, E. L.; Nickell, R. E., Application of the finite element method to heat conduction analysis, Nucl. Eng. Des., 4, 276-286, (1966)
[67] Zienkiewicz, O. C.; Taylor, R. L., The finite element method, (2000), Butterworth-Heinemann Oxford · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.