×

Dynamic inversion characteristics of composite reinforced tubes. (English) Zbl 1406.74164

Summary: An analytical solution is presented to study the energy absorption properties of composite reinforced tubes undergoing freely dynamic external inversion. A finite element method is used to indirectly validate the analytical solution for dynamic inversion characteristics of composite reinforced tubes. Compared with finite element results, the feasibility of the analytical method is simply verified. The effects of composite layer (viz. fiber layer thickness and fiber reinforced orientation), dynamic loading and section shape of tube on the inversion characteristics of composite reinforced tubes are described and investigated in examples, respectively.

MSC:

74E30 Composite and mixture properties

Software:

ABAQUS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abaqus 6.12 Analysis User’s Manual, (2012), Dassault Systèmes Simulia Corp Providence, RI, USA
[2] Ahmad, Z.; Thambiratnam, D. P., Crushing response of foam-filled conical tubes under quasi-static axial loading, Mater. Des., 30, 7, 2393-2403, (2009)
[3] Camanho, P. P.; Davila, C. G., Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, 1-37, (2002), NASA/TM-2002-211737
[4] Colokoglu, A.; Reddy, T. Y., Strain rate and inertial effects in free external inversion of tubes, Int. J. Crashworthiness, 1, 93-105, (1996)
[5] David, M.; Johnson, A. F.; Voggenreiter, H., Analysis of crushing response of composite crashworthy structures, Appl. Compos Mater., 20, 773-787, (2013)
[6] Eyvazian, A.; Habibi, M. K.; Hamouda, A. M.; Hedayati, R., Axial crushing behavior and energy absorption efficiency of corrugated tubes, Mater. Des., 54, 1028-1038, (2014)
[7] Eyvazian, A.; Akbarzadeh, I.; Shakeri, M., Experimental study of corrugated tubes under lateral loading, Proc. IMechE Part L J. Mater. Des. Appl., 226, 109-118, (2016)
[8] Guist, L. R.; Marble, D. P., Prediction of the inversion load of a circular tube, (1966), NASA, technical note TN-D-3622
[9] Hanefi, E. H.; Wierzbicki, T., Axial resistance and energy absorption of externally reinforced metal tubes, Compos. Part B, 27, 387-394, (1996)
[10] Hashin, Z., Failure criteria for unidirectional fiber composites, J. Appl. Mech., 47, 329-334, (1980) · Zbl 0468.73123
[11] Hashin, Z.; Rotem, A., A fatigue criterion for fiber-reinforced materials, J. Compos. Mater., 7, 448-464, (1973)
[12] Holger, B.; Daniel, W.; Andreas, H.; Albert, L.; Frank, A.; Maik, G., Experimental and numerical study on the axial crushing behavior of textile-reinforced thermoplastic composite tubes, Adv. Eng. Mater., 18, 3, 437-443, (2016)
[13] Hong, W. S.; Zhi, M. W.; Zhi, M. X.; Xing, W. D., Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes, Int. J. Impact Eng., 24, 385-401, (2000)
[14] Jones, N., Structure impact, (1989), Cambridge University Press UK
[15] Kroell, C. K.A., Simple, efficient, one shot energy absorber, (Proceedings of Shock, Vibration and Associated Environments, Part III, Bulletin 30. 30th Symposium on Shock, (1962), Vibration and Associated Environments Detroit, Mich)
[16] Lu, G.; Yu, T., Energy absorption of structures and materials, (2000), Woodhead Publishing Limited Press Cambridge England
[17] Mamalis, A. G.; Manolakos, D. E.; Demosthenous, G. A.; Johnson, W., Axial plastic collapse of thin bi-material tubes as energy dissipating systems, Int. J. Impact Eng., 11, 2, 185-196, (1991)
[18] Matzenmiller, A.; Lubliner, J.; Taylor, R. L., A constitutive model for anisotropic damage in fiber-composites, Mech. Mater., 20, 125-152, (1995)
[19] Mohsenizadeh, S.; Alipour, R.; Rad, S. M.; Nejad, Farokhi A.; Ahmad, Z., Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading, Mater. Des., 88, 258-268, (2015)
[20] Qiu, X.; He, L.; Yu, X., A three-dimensional model of circular tube under quasi-static external free inversion, Int. J. Mech. Sci., 75, 87-98, (2013)
[21] Qiu, X.; He, L.; Gu, J.; Yu, X., An improved theoretical model of a metal tube under free external inversion, Thin-Walled Struct., 80, 32-37, (2014)
[22] Rabiee, A.; Ghasemnejad, H., Effect of multi stitched locations on high speed crushing of composite tubular structures, Compos. Part B, 100, 164-175, (2016)
[23] Reddy, T. Y., Guist and marble revisited-on the natural knuckle radius in tube inversion, Int. J. Mech. Sci., 34, 761-768, (1992)
[24] Redwood, R. G., Discussion on the paper by J. A. deruntz and P. G, Hodge. Appl. Mech., 31, 357-359, (1964)
[25] Wang, X. G., Crushing behaviour of multi-material tubular structures, (1991), Department of Solid Mechanics. Ecole Centrale de Lyon, Doctor of philosophy thesis
[26] Wang, X.; Lu, G., Axial crushing force of externally fiber reinforced metal tubes, Proc. Inst. Mech. Eng. Part C, 216, 863-874, (2002)
[27] Wang, X. G.; Bloch, J. A.; Cesari, D., Static and dynamic axial crushing of externally reinforced tubes, Proc. Inst. Mech. Eng. Part C, 206, 355-360, (1992)
[28] Yu, X.; Qiu, X.; Yu, T., Analysis of the free external inversion of circular tubes based on deformation theory, Int. J. Mech. Sci., 100, 262-268, (2015)
[29] Yu, X.; Qiu, X.; Yu, T., Theoretical model of a metal tube under inversion over circular dies, Int. J. Mech. Sci., 108-109, 23-28, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.