zbMATH — the first resource for mathematics

A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity. (English) Zbl 1406.74125
Summary: Continuum damage mechanics provides a powerful tool to describe the effects of the growth of micro-voids on the response of ductile materials at the macroscopic scale. Within the framework of thermodynamic and finite strain elasto-plasticity, this paper develops a new damage model considering both stress triaxiality and shear stress ratio, both of which influence the micro-void evolution and the ductile fracture process. To overcome the nonconverging mesh dependency problems in finite element modeling in the region of strain and damage localization, the new damage model is coupled with the nonlocal regularization. The model is implemented using a mixed explicit-implicit algorithm. In addition, the arbitrary Lagrangian-Eulerian (ALE) remeshing strategy is introduced to avoid difficulties caused by excessive element distortion. Two numerical examples are provided: tension of a plate under plane strain and tension and torsion tests on M5 zirconium alloy. The results show elimination of mesh dependency using the combined nonlocal and ALE method. Parametric studies on the characteristic length in the nonlocal formulation and the damage related factors illustrate that all the parameters significantly influence the damage distribution and the material response. The validation studies also indicate that the proposed model has significant potential to represent material response and predict ductile fracture at both low and high triaxialities.
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74A45 Theories of fracture and damage
74R20 Anelastic fracture and damage
Full Text: DOI
[1] Anderson, T. L., Fracture mechanics: fundamentals and applications, (2017), CRC press · Zbl 1360.74001
[2] Andrade, F. C.; Pires, F. A.; de Sá, J.; Malcher, L., Nonlocal integral formulation for a plasticity-induced damage model, Comput. Meth. Mater. Sci., 9, 49-54, (2009)
[3] Andrade, F.; César de Sá, J.; Andrade Pires, F., A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues, Int. J. Damage Mech., 20, 515-557, (2011)
[4] Askes, H.; Bodé, L.; Sluys, L., Ale analyses of localization in wave propagation problems, Mech. Cohesive-Frict. Mater., 3, 105-125, (1998)
[5] Bai, Y., Effect of loading history on necking and fracture, (2007), Massachusetts Institute of Technology Cambridge, Ph.D. thesis
[6] Bao, Y., Prediction of ductile crack formation in uncracked bodies, (2003), Massachusetts Institute of Technology, Ph.D. thesis
[7] Barsoum, I.; Faleskog, J., Rupture mechanisms in combined tension and shearmicromechanics, Int. J. Solid Struct., 44, 5481-5498, (2007) · Zbl 1178.74148
[8] Bažant, Z. P., Why continuum damage is nonlocal: micromechanics arguments, J. Eng. Mech., 117, 1070-1087, (1991)
[9] Bažant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 1119-1149, (2002)
[10] Bazant, Z. P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech., 55, 287-293, (1988) · Zbl 0663.73075
[11] Bažant, Z. P.; Belytschko, T. B.; Chang, T. P., Continuum theory for strain-softening, J. Eng. Mech., 110, 1666-1692, (1984)
[12] Bažant, Z.; Lin, F. B., Non-local yield limit degradation, Int. J. Numer. Meth. Eng., 26, 1805-1823, (1988) · Zbl 0661.73041
[13] Belnoue, J.; Korsunsky, A., A damage function formulation for nonlocal coupled damage-plasticity model of ductile metal alloys, Eur. J. Mech. Solid., 34, 63-77, (2012)
[14] Belnoue, J. P.; Nguyen, G. D.; Korsunsky, A. M., A one-dimensional nonlocal damage-plasticity model for ductile materials, Int. J. Fract., 144, 53-60, (2007) · Zbl 1197.74152
[15] Belnoue, J. P.; Nguyen, G. D.; Korsunsky, A. M., Consistent tangent stiffness for local-nonlocal damage modelling of metals, Procedia Eng., 1, 177-180, (2009)
[16] Belnoue, J. P.; Garnham, B.; Bache, M.; Korsunsky, A. M., The use of coupled nonlocal damage-plasticity to predict crack growth in ductile metal plates, Eng. Fract. Mech., 77, 1721-1729, (2010)
[17] Benzerga, A. A.; Leblond, J. B.; Needleman, A.; Tvergaard, V., Ductile failure modeling, Int. J. Fract., 201, 29-80, (2016)
[18] Borino, G.; Failla, B.; Parrinello, F., A symmetric nonlocal damage theory, Int. J. Solid Struct., 40, 3621-3645, (2003) · Zbl 1038.74509
[19] Brunet, M.; Morestin, F.; Walter, H., Damage identification for anisotropic sheet-metals using a non-local damage model, Int. J. Damage Mech., 13, 35-57, (2004)
[20] Brunet, M.; Morestin, F.; Walter-Leberre, H., Failure analysis of anisotropic sheet-metals using a non-local plastic damage model, J. Mater. Process. Technol., 170, 457-470, (2005)
[21] Cao, T. S.; Gaillac, A.; Montmitonnet, P.; Bouchard, P. O., Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical-experimental analysis of fracture experiments conducted on a zirconium alloy, Int. J. Solid Struct., 50, 3984-3999, (2013)
[22] Chow, C. L.; Mao, J.; Shen, J., Nonlocal damage gradient model for fracture characterization of aluminum alloy, Int. J. Damage Mech., 20, 1073-1093, (2011)
[23] Cosserat, E.; Cosserat, F., Théorie des corps Déformables, (1909) · JFM 40.0862.02
[24] de Almeida César de Sá, J.; Pires, F. M.A.; Andrade, F. X.C., Local and nonlocal modeling of ductile damage, Adv. Comput. Mater. Model.: From Classical to Multi-Scale Techniques, 23-72, (2011)
[25] DE, R. P.R.; De Vree, J., Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Meth. Eng., 39, 3391-3403, (1996) · Zbl 0882.73057
[26] Drabek, T.; Böhm, H. J., Damage models for studying ductile matrix failure in composites, Comput. Mater. Sci., 32, 329-336, (2005)
[27] Drabek, T.; Böhm, H. J., Micromechanical finite element analysis of metal matrix composites using nonlocal ductile failure models, Comput. Mater. Sci., 37, 29-36, (2006)
[28] Eringen, A. C., A unified theory of thermomechanical materials, Int. J. Eng. Sci., 4, 179-202, (1966) · Zbl 0139.20204
[29] Eringen, A. C., On nonlocal plasticity, Int. J. Eng. Sci., 19, 1461-1474, (1981) · Zbl 0474.73028
[30] Eringen, A. C., Theories of nonlocal plasticity, Int. J. Eng. Sci., 21, 741-751, (1983) · Zbl 0519.73024
[31] Eringen, A. C.; Edelen, D., On nonlocal elasticity, Int. J. Eng. Sci., 10, 233-248, (1972) · Zbl 0247.73005
[32] Fleck, N.; Hutchinson, J., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solid., 41, 1825-1857, (1993) · Zbl 0791.73029
[33] Fleck, N.; Hutchinson, J., Strain gradient plasticity, Adv. Appl. Mech., 33, 296-361, (1997) · Zbl 0894.73031
[34] Germain, P.; Suquet, P.; Nguyen, Q., Continuum thermodynamics, ASME Trans. Series E J. Appl. Mech., 50, 1010-1020, (1983) · Zbl 0536.73004
[35] Gologanu, M.; Leblond, J. B.; Devaux, J., Approximate models for ductile metals containing non-spherical voidscase of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solid., 41, 1723-1754, (1993) · Zbl 0796.73014
[36] Grassl, P.; Jirásek, M., Plastic model with non-local damage applied to concrete, Int. J. Numer. Anal. Meth. GeoMech., 30, 71-90, (2006) · Zbl 1140.74538
[37] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: part iyield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2-15, (1977)
[38] Huerta, A.; Pijaudier-Cabot, G.; Bodé, L., Ale formulation in nonlocal strain softening solids, (Proc. Conf. On Computational Plasticity, Fundamentals and Applications, Parti, pp. 2249-2268, (1992))
[39] Jirasek, M., Nonlocal models for damage and fracture: comparison of approaches, Int. J. Solid Struct., 35, 4133-4145, (1998) · Zbl 0930.74054
[40] Jirásek, M.; Rolshoven, S., Comparison of integral-type nonlocal plasticity models for strain-softening materials, Int. J. Eng. Sci., 41, 1553-1602, (2003) · Zbl 1211.74039
[41] Kachanov, L., On growth of cracks under creep conditions, Int. J. Fract., 14, R51-R52, (1978)
[42] Korsunsky, A. M.; Nguyen, G. D.; Houlsby, G. T., Analysis of essential work of rupture using non-local damage-plasticity modelling, Int. J. Fract., 135, L19-L26, (2005) · Zbl 1196.74246
[43] Lemaitre, J., A continuous damage mechanics model for ductile fracture. transactions of the ASME, J. Eng. Mater. Technol., 107, 83-89, (1985)
[44] Lemaitre, J., A course on damage mechanics, (2012), Springer Science & Business Media
[45] Lemaitre, J.; Desmorat, R., Engineering damage mechanics: ductile, creep, fatigue and brittle failures, (2005), Springer Science & Business Media
[46] Lou, Y.; Yoon, J. W.; Huh, H., Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, Int. J. Plast., 54, 56-80, (2014)
[47] Maire, E.; Bouaziz, O.; Di Michiel, M.; Verdu, C., Initiation and growth of damage in a dual-phase steel observed by x-ray microtomography, Acta Mater., 56, 4954-4964, (2008)
[48] Malcher, L.; Pires, F. A.; De Sá, J. C., An extended gtn model for ductile fracture under high and low stress triaxiality, Int. J. Plast., 54, 193-228, (2014)
[49] McVeigh, C.; Vernerey, F.; Liu, W. K.; Moran, B.; Olson, G., An interactive micro-void shear localization mechanism in high strength steels, J. Mech. Phys. Solid., 55, 225-244, (2007)
[50] Nahshon, K.; Hutchinson, J., Modification of the Gurson model for shear failure, Eur. J. Mech. Solid., 27, 1-17, (2008) · Zbl 1129.74041
[51] Peerlings, R.; Poh, L. H.; Geers, M., An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening, Eng. Fract. Mech., 95, 2-12, (2012)
[52] Pijaudier-Cabot, G.; Bodé, L.; Huerta, A., Arbitrary Lagrangian-Eulerian finite element analysis of strain localization in transient problems, Int. J. Numer. Meth. Eng., 38, 4171-4191, (1995) · Zbl 0843.73075
[53] Pineau, A.; Benzerga, A. A.; Pardoen, T., Failure of metals i: brittle and ductile fracture, Acta Mater., 107, 424-483, (2016)
[54] Poh, L.; Swaddiwudhipong, S., Gradient-enhanced softening material models, Int. J. Plast., 25, 2094-2121, (2009)
[55] Rice, J. R.; Tracey, D. M., On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solid., 17, 201-217, (1969)
[56] Rousselier, G., Ductile fracture models and their potential in local approach of fracture, Nucl. Eng. Des., 105, 97-111, (1987)
[57] Rousselier, G., Dissipation in porous metal plasticity and ductile fracture, J. Mech. Phys. Solid., 49, 1727-1746, (2001) · Zbl 1007.74069
[58] Saanouni, K.; Forster, C.; Hatira, F. B., On the anelastic flow with damage, Int. J. Damage Mech., 3, 140-169, (1994)
[59] Smith, C. M.; Deierlein, G. G.; Kanvinde, A. M., A stress-weighted damage model for ductile fracture initiation in structural steel under cyclic loading and generalized stress states, Technical Rep, 187, (2014)
[60] Tvergaard, V., Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389-407, (1981)
[61] Tvergaard, V., Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation, Int. J. Solid Struct., 60, 28-34, (2015)
[62] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157-169, (1984)
[63] Tvergaard, V.; Needleman, A., Effects of nonlocal damage in porous plastic solids, Int. J. Solid Struct., 32, 1063-1077, (1995) · Zbl 0866.73060
[64] Xue, L., Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech., 75, 3343-3366, (2008)
[65] Zhu, Y.; Engelhardt, M. D., Prediction of ductile fracture for metal alloys using a shear modified void growth model, Eng. Fract. Mech., 190, 491-513, (2018), URL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.