×

zbMATH — the first resource for mathematics

Continuum approach for modelling transversely isotropic high-cycle fatigue. (English) Zbl 1406.74011
Summary: A continuum approach is proposed for modelling multiaxial high-cycle fatigue of solids which exhibit transversely isotropic fatigue properties. The approach is an extension of the original isotropic model proposed by G. Allegri and X. Zhang [Int. J. Fatigue 30, No. 6, 967–977 (2008; Zbl 1273.74493)], which model is based on the concept of a moving endurance surface in the stress space and on an evolving damage variable. The theory is formulated in a rate form within continuum mechanics framework without the need to measure damage changes per loading cycles. Capability of the approach is illustrated by several examples with different uni- and multiaxial loading histories.

MSC:
74A10 Stress
74R20 Anelastic fracture and damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, S.; Kruch, S., Differential continuum damage mechanics models for creep and fatigue of unidirectionla metal matrix composites, Technical Report, (1991), 105213. NASA Technical Memorandum 105213
[2] Askes, H.; Livieri, P.; Susmel, L.; Taylor, D.; Tovo, R., Intrinsic material length, theory of critical distances and gradient mechanics: analogies and differences in processing linear-elastic crack tip stress fields, Fatigue & Fract. Eng. Mater. Struct., 36, 39-55, (2012)
[3] Boehler, J., Yielding and failure of transversely isotropic solids. Springer-verlag, Number 292 in International Centre for Mechanical Sciences, Courses and Lectures, Applications of Tensor Functions in Solid Mechanics, 67-97, (1987), (chapter 5)
[4] Bolotin, V., Mechanics of fatigue, CRC Mechanical Engineering Series, (1999), CRC Press Boca Raton
[5] Brighenti, R.; Carpinteri, A.; Corbari, N., Damage mechanics and Paris regime in fatigue life assessment of metals, Int. J. Press. Vessels Pip., 104, 57-68, (2013)
[6] Carpinteri, A.; Spagnoli, A., Multiaxial high-cycle fatigue criterion for hard metals, Int. J. Fatigue, 23, 135-145, (2001)
[7] Dang Van, K., Macro-micro approach in high-cycle multiaxial fatigue, (McDowell, D., Advances in Multiaxial Fatigue, (1993), Americal Society for Testing and Materials Philadelphia), 120-130
[8] Dang Van, K.; Gailletaud, G.; Flavenot, G.; Le Douaron, A.; Lieurade, H., Criterion for high cycle fatigue failure under multiaxial loading, (Brown, M.; Miller, K., Biaxial and Multiaxial Fatigue, Mechanical Engineering Publications, London, (1989)), 459-478
[9] Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J., Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue, Eur. J. Mech. - A/Solids, 26, 909-935, (2007) · Zbl 1142.74040
[10] Ding, X.; He, G.; Chen, C.; Zhu, Z.; Liu, X.; Crepeau, P., A brief review of multiaxial high-cycle fatigue, Metallurgical Mater. Trans. B, 38B, 591-599, (2007)
[11] Findley, W., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, J. Eng. Industry, 301-306, (1959)
[12] Forrest, P., Fatigue of metals, (1962), Pergamon Press
[13] Holopainen, S.; Kouhia, R.; Könnö, J.; Saksala, T., Computational modelling of high-cycle cycle fatigue using a continuum based model, (Berezovski, A.; Tamm, K.; Peets, T., Proc. Of the 28th Nordic Seminar on Computational Mechanics, 22-23 October, 2015, Tallinn, Estonia, (2015), Institute of Cybernetics at Tallinn University of Technology), 71-74
[14] Kenmeugne, B.; Soh Fotsing, B.; Anago, G.; Fogue, M.; Roberts, J. L.; Kenne, J. P., On the evolution and comparison of multiaxial fatigue criteria, Int. J. Eng. Technol., 4, 37-46, (2012), URL
[15] Kruch, S.; Arnold, S., Creep damage and creep-fatigue damage interaction model for unidirectional metal-matrix composites, (McDowell, D., Applications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM, (1997)), 7-28
[16] Lemaitre, J., How to use damage mechanics, Nucl. Eng. Des., 80, 233-245, (1984)
[17] Lemaitre, J.; Chaboche, J. L., Mechanics of solid materials, (1990), Cambridge University Press
[18] Lemaitre, J.; Desmorat, R., Engineering damage mechanics, ductile, creep, fatigue and brittle failures, (2005), Springer-Verlag Berlin, Heidelberg
[19] Liu, J.; Zenner, H., Fatigue limit of ductile metals under multiadial loading, (Carpinteri, A.; de Freitas, M.; Spagnoli, A., Biaxial/multiaxial Fatigue and Fracture, (2003), Elsevier Science Ltd. and ESIS), 147-163
[20] Liu, Y.; Mahadevan, S., A unified multiaxial fatigue damage model for isotropic and unisotropic materials, Int. J. Fatigue, 29, 347-359, (2007) · Zbl 1194.74328
[21] Lorand, K., Review of high-cycle fatigue lodels applied for multiaxial tension-torsion loading based on a new accuracy assesment parameter, J. Eng. Stud. Res., 18, 75-86, (2012)
[22] Luu, D.; Maitournam, M.; Nguyen, Q., Formulation of gradient multiaxial fatigue criteria, Int. J. Fatigue, 61, 170-183, (2014)
[23] Makkonen, L.; Rabb, R.; Tikanmäki, M., Size effect in fatigue based on the extreme value distributions of defects, Mater. Sci. Eng. A, 594, 68-71, (2014)
[24] Matake, T., An explanation on fatigue limit under combined stress, Bull. Jpn. Soc. Mech. Eng., 20, 257-263, (1977)
[25] McDiarmid, D., Fatigue under out of phase biaxial stresses of different frequences, (Miller, K.; Brown, M., Multiaxial Fatigue, ASTM STP 853, ASTM, Philadelphia, PA, (1985)), 606-621
[26] McDiarmid, D., Effect of mean stress on biaxial fatigue where stresses are out-of-phase and at different frequences, (Brown, M.; Miller, K., Biaxial and Multiaxial Fatigue, EGF3, London, (1989)), 605-619
[27] McDowell, D., Basic issues in the mechanics of high cycle metal fatigue, Int. J. Fract., 80, 103-145, (1996)
[28] Mielke, S., Festigkeitsvarhalten metallischer werkstoffe unter zweiachsig schwingender beanspruchung mit verchiedenen spannungszeitverläufen, (1980), RWTH Aachen, Ph.D. thesis
[29] Morel, F., A critical plane fatigue model applied to out-of-phase bending and torsion load conditions, Fatigue & Fract. Eng. Mater. Struct., 24, 153-164, (2001)
[30] Morel, F.; Palin-Luc, T.; Froustey, C., Comparative study and link between mesoscopic and energetic approaches in high cycle multiaxial fatigue, Int. J. Fatigue, 23, 317-327, (2001)
[31] Murakami, S., Continuum damage mechanics. volume 185 of solid mechanics and its applications, (2012), Springer Netherlands
[32] Murakami, Y., Metal fatigue, effects of small defects and nonmetallic inclusions, (2002), Elsevier Science
[33] Oberg, E.; Jones, F.; Horton, H.; Ryffel, H., Machinery’s handbook, (1996), Industrial Press Inc
[34] Ottosen, N.; Stenström, R.; Ristinmaa, M., Continuum approach to high-cycle fatigue modeling, Int. J. Fatigue, 30, 996-1006, (2008) · Zbl 1273.74515
[35] Paas, M.; Schreurs, P.; Brekelmans, W., A continuum approach to brittle and fatigue damage, Int. J. Solids Struct., 30, 579-599, (1993) · Zbl 0825.73563
[36] Palin-Luc, T.; Lasserre, S., An energy based criterion for high cycle multiaxial fatigue, Eur. J. Mech. - A/Solids, 17, 237-251, (1998) · Zbl 0936.74008
[37] Papadopoulos, I.; Davoli, P.; Gorla, C.; Filippini, M.; Bernasconi, A., A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue, 19, 219-235, (1997)
[38] Papadopoulos, I. V., Long life fatigue under multiaxial loading, Int. J. Fatigue, 23, 839-849, (2001)
[39] Peerlings, R.; Brekelmans, W.; de Borst, R.; Geers, M., Gradient-enhanced damage modelling of high-cycle fatigue, Int. J. Numer. Methods Eng., 49, 1547-1569, (2000) · Zbl 0995.74056
[40] Robinson, D.; Binienda, W.; Miti-Kavuma, M., Creep and creep rupture of strongly reinforced metallic composites, Contractor Report 185286, (1990), NASA. Lewis Research Center
[41] Robinson, D.; Duffy, S., Continuum deformation theory for high-temperature metallic composites, J. Eng. Mech. ASCE, 116, 832-844, (1990)
[42] Roiko, A.; Hänninen, H.; Vuorikari, H., Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit, Int. J. Fatigue, 41, 158-167, (2012)
[43] Sines, G., Failure of materials under combined repeated stresses with superimposed static stresses, Technical Report 3495, (1955), NACA Washington, USA
[44] Sines, G., Behavior of metals under complex stresses, 145-169, (1959), McGraw-Hill
[45] Socie, D.; Marquis, G., Multiaxial fatigue, (2000), Society of Automotive Engineers, Inc. Warrendale, Pa
[46] Suresh, S., Fatigue of materials, (1998), Cambridge University Press
[47] Wang, Y. Y.; Yao, W. X., Evaluation and comparison of several multiaxial fatigue criteria, Int. J. Fatigue, 26, 17-25, (2004)
[48] Zhang, L.; Liu, X.; Wang, L.; Wu, S.; Fang, H., A model of continuum damage mechanics for high cycle fatigue of metallic materials, Trans. Nonferrous Metals Soc. China, 22, 2777-2782, (2012)
[49] Zouain, N.; Cruz, I., A high-cycle fatigue criterion with internal variables, Eur. J. Mech. - A/Solids, 21, 597-614, (2002) · Zbl 1004.74008
[50] Zouain, N.; Mamiya, E. N.; Comes, F., Using enclosing ellipsoids in multiaxial fatigue strength criteria, Eur. J. Mech. - A/Solids, 25, 51-71, (2006) · Zbl 1083.74045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.