×

zbMATH — the first resource for mathematics

Convergence of the Godunov scheme for a scalar conservation law with time and space discontinuities. (English) Zbl 1406.35190

MSC:
35L65 Hyperbolic conservation laws
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adimurthi; Jaffré, J.; Gowda, G. D. V., Godunov-type methods for conservation laws with a flux function discontinuous in space, SIAM J. Numer. Anal., 42, 1, 179-208, (2004) · Zbl 1081.65082
[2] Adimurthi; Mishra, S.; Gowda, G. D. V., Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2, 4, 783-837, (2005) · Zbl 1093.35045
[3] Andreianov, B.; Cancès, C., The Godunov scheme for scalar conservation laws with discontinuous Bell-shaped flux functions, Appl. Math. Lett., 25, 11, 1844-1848, (2012) · Zbl 1253.65122
[4] Andreianov, B.; Cancès, C., On interface transmission conditions for conservation laws with discontinuous flux of general shape, J. Hyperbolic Differ. Equ., 12, 2, 343-384, (2015) · Zbl 1336.35230
[5] Andreianov, B.; Karlsen, K. H.; Risebro, N. H., On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterogeneous Media, 5, 3, 617-633, (2010) · Zbl 1270.35305
[6] Andreianov, B.; Karlsen, K. H.; Risebro, N. H., A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201, 1, 27-86, (2011) · Zbl 1261.35088
[7] Bretti, G.; Natalini, R.; Piccoli, B., Numerical approximations of a traffic flow model on networks, Netw. Heterogeneous Media, 1, 1, 57-84, (2006) · Zbl 1124.90005
[8] Bürger, R.; García, A.; Karlsen, K. H.; Towers, J. D., A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60, 387-425, (2008) · Zbl 1200.76126
[9] Bürger, R.; García, A.; Karlsen, K. H.; Towers, J. D., Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model, Netw. Heterogeneous Media, 3, 1-41, (2008) · Zbl 1173.35586
[10] Bürger, R.; Karlsen, K. H.; Klingenberg, C.; Risebro, N. H., A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units, Nonlinear Anal. Real World Appl., 4, 3, 457-48, (2003) · Zbl 1013.35052
[11] Bürger, R.; Karlsen, K. H.; Risebro, N. H.; Towers, J. D., Well-posedness in \(B V_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math., 97, 1, 25-65, (2004) · Zbl 1053.76047
[12] Bürger, R.; Karlsen, K. H.; Towers, J. D., An engquist-osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47, 3, 1684-1712, (2009) · Zbl 1201.35022
[13] Coclite, G. M.; Risebro, N. H., Conservation laws with time dependent discontinuous coefficients, SIAM J. Math. Anal., 36, 1293-1309, (2005) · Zbl 1078.35071
[14] Daganzo, C. F., The cell transmission model, part II: network traffic, Transp. Res. B, 29, 79-93, (1995)
[15] Diehl, S., A regulator for continuous sedimentation in ideal clarifier-thickener units, J. Eng. Math., 60, 265-291, (2008) · Zbl 1133.76045
[16] Diehl, S., A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 6, 1, 127-159, (2009) · Zbl 1180.35305
[17] Garavello, M.; Piccoli, B., Traffic Flow on Networks, (2006), American Institute of Mathematical Sciences, Springfield, MO, USA · Zbl 1136.90012
[18] Gimse, T.; Risebro, N. H., Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23, 3, 635-648, (1992) · Zbl 0776.35034
[19] Goatin, P. G.; Göttlich, S.; Kolb, O., Speed limit and ramp meter control for traffic flow networks, Eng. Optim., 48, 1121-1144, (2016)
[20] Holden, H.; Risebro, N. H., Front Tracking for Hyperbolic Conservation Laws, 152, (2002), Springer-Verlag, New York · Zbl 1006.35002
[21] Jin, W.; Zhang, H., The inhomogeneous kinematic wave traffic flow model as a resonant nonlinear system, Transp. Sci., 37, 294-311, (2003)
[22] Karlsen, K. H.; Risebro, N. H.; Towers, J. D., On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differ. Equ., 93, 23, (2002) · Zbl 1015.35049
[23] Karlsen, K. H.; Risebro, N. H.; Towers, J. D., Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient, IMA J. Numer. Anal., 22, 4, 623-664, (2002) · Zbl 1014.65073
[24] Karlsen, K. H.; Risebro, N. H.; Towers, J. D., \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3, 1-49, (2003) · Zbl 1036.35104
[25] Karlsen, K. H.; Towers, J. D., Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux, Chinese Ann. Math., 25B, 287-318, (2004) · Zbl 1112.65085
[26] Klingenberg, C.; Risebro, N. H., Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations, 20, 11-12, 1959-1990, (1995) · Zbl 0836.35090
[27] Lebacque, J. P.; Lesort, J. B., The Godunov scheme and what it means for first order traffic flow models, Proc. 13th ISTTT Transportation and Traffic Theory, 647-677, (1996), Pergamon Press, Oxford, UK
[28] LeVeque, R. J., Numerical Methods for Conservation Laws, (1992), Birkhäuser Verlag, Basel · Zbl 0847.65053
[29] Liu, H.; Zhang, L.; Sun, D.; Wang, D., Optimize the settings of variable speed limit system to improve the performance of freeway traffic, IEEE Trans. Intell. Transp. Syst., 16, 6, 3249-3257, (2015)
[30] Monache, M. L. D.; Piccoli, B.; Rossi, F., Traffic regulation via controlled speed limit, SIAM J. Control Optim., 55, 5, 2936-2958, (2017) · Zbl 1377.90016
[31] Muralidharan, A.; Horowitz, R., Optimal control of freeway networks based on the link node cell transmission model, Proc. Amer. Control Conf., 5769-5774, (2012), IEEE, Montreal, Canada
[32] Seguin, N.; Vovelle, J., Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci., 13, 2, 221-257, (2003) · Zbl 1078.35011
[33] Towers, J. D., Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38, 2, 681-698, (2000) · Zbl 0972.65060
[34] Zhang, M.; Shu, C. W.; Wong, G. C. K.; Wong, S. C., A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys., 191, 639-659, (2003) · Zbl 1041.90008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.