×

zbMATH — the first resource for mathematics

Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling. (English) Zbl 1405.92248
Summary: The spread of highly pathogenic avian influenza (HPAI) H5N1 remains a threat for both wild and domestic bird populations, while low pathogenic avian influenza (LPAI) strains have been reported to induce partial immunity to HPAI in poultry and some wild birds inoculated with both HPAI and LPAI strains. Here, based on the reported data and experiments, we develop a two-strain avian influenza model to examine the extent to which this partial immunity observed at the individual level can affect the outcome of the outbreaks among migratory birds in the wild at the population level during different seasons. We find a distinct mitigating effect of LPAI on the death toll induced by HPAI strain, and this effect is particularly important for populations previously exposed to and recovered from LPAI. We further investigate the effect of the dominant mode of transmission of an HPAI strain on the outcome of the epidemic. Four combinations of contact based direct transmission and indirect fecal-to-oral (or environmental) routes are examined. For a given infection peak of HPAI, indirect fecal-to-oral transmission of HPAI can lead to a higher death toll than that associated with direct transmission. The mitigating effect of LPAI can, in turn, be dependent on the route of infection of HPAI.

MSC:
92D30 Epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexander, D.J., An overview of the epidemiology of Avian influenza, Vaccine, 25, 5637-5644, (2007)
[2] Andreasen, V.; Lin, J.; Levin, S.A., The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. math. biol., 35, 825-842, (1997) · Zbl 0874.92023
[3] Bourouiba, L.; Wu, J.; Newman, S.; Takekawa, J.; Natdorj, T.; Batbayar, N.; Bishop, C.M.; Hawkes, L.A.; Butler, P.J.; Wikelski, M., Spatial dynamics of bar-headed geese migration in the context of H5N1, J. R. soc. interface, 7, 1627-1639, (2010)
[4] Brauer, F., van den Driessche, P., Wu, J. (Eds.), 2008. Mathematical Epidemiology. Lecture Notes in Mathematics. Springer.
[5] Breban, R.; Drake, J.M.; Stallknecht, D.E.; Rohani, P., The role of environmental transmission in recurrent Avian influenza epidemics, Plos comput. biol., 5, (2009), e1000346-1-11
[6] Brown, J.D.; Goekjian, G.; Poulson, R.; Valeika, S.; Stallknecht, D.E., Avian influenza virus in water: infectivity is dependent on ph, salinity and temperature, Vet. microbiol., 136, 20-26, (2009)
[7] Brown, J.D.; Stallknecht, D.E.; Beck, J.R.; Suarez, D.L.; Swayne, D.E., Susceptibility of north American ducks and gulls to H5N1 highly pathogenic Avian influenza viruses, Emerg. infect. dis., 12, 1663-1670, (2006)
[8] Brown, J.D.; Stallknecht, D.E.; Swayne, D.E., Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage, Emerg. infect. dis., 14, 136-142, (2008)
[9] Brown, J.D.; Swayne, D.E.; Cooper, R.J.; Burns, R.E.; Stallknecht, D.E., Persistence of H5 and H7 Avian influenza viruses in water, Avian dis., 51, 285-289, (2007)
[10] CDC, 2006. Centers for disease control & prevention on avian influenza: current situation. Centers for Disease Control. URL \(\langle\)http://www.cdc.gov/flu/avian/outbreaks/current.htm〉.
[11] Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G., 2009. The construction of next-generation matrices for compartmental epidemic models. In: Ed., Simon Levin, Journal of Royal Society Interface. Wiley series in Mathematical and Computational Biology, Princeton University, USA.
[12] Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G., 2009. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface.
[13] Gilbert, M.; Xiao, X.; Pfeiffer, D.U.; Epprecht, M.; Boles, S.; Czarnecki, C.; Chaitaweesub, P.; Kalpravidh, W.; Minh, P.Q.; Otte, M.J.; Martin, V.; Slingenbergh, J., Mapping H5N1 highly pathogenic Avian influenza risk in southeast Asia, Proc. natl. acad. sci., 105, 4769-4774, (2008)
[14] Globig, A.; Staubach, C.; Beer, M.; Köppen, U.; Fiedler, W.; Nieburg, M.; Wilking, H.; Starick, E.; Teifke, J.P.; Werner, O.; Unger, F.; Grund, C.; Wolf, C.; Roost, H.; Feldhusen, F.; Conraths, F.J.; Mettenleiter, T.C.; Harder, T.C., Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007, Transboundary emerg. dis., 56, 57-72, (2009)
[15] Heffernan, J.M.; Smith, R.J.; Wahl, L.M., Perspectives on the basic reproduction ratio, J. R. soc. interface, 2, 281-293, (2005)
[16] Iwami, S.; Takeuchi, Y.; Liu, X.; Nakaoka, S., A geographical spread of vaccine-resistance in Avian influenza epidemics, J. theor. biol., 259, 219-228, (2009) · Zbl 1402.92277
[17] Jeong, O.-M.; Kim, M.-C.; Kang, H.-M.; Kim, H.-R.; Kim, Y.-J.; Joh, S.-J.; Kwon, J.-H.; Lee, Y.-J., Experimental infection of chickens, ducks and quails with the highly pathogenic H5N1 Avian influenza virus, J. vet. sci., 10, 53-60, (2009)
[18] Kalthoff, D.; Breithaupt, A.; Teifke, J.P.; Globig, A.; Harder, T.; Mettenleiter, T.C., Pathogenicity of highly pathogenic Avian influenza virus (H5N1) in adult mute swans, Emerg. infect. dis., 14, 1267-1270, (2008)
[19] Keawcharoen, J.; van Riel, D.; van Amerongen, G.; Bestebroer, T.; Beyer, W.E.; van Lavieren, R., Wild ducks as long-distance vectors of highly pathogenic Avian influenza virus (H5N1), Emerg. infect. dis., 14, 600-607, (2008)
[20] Lucchetti, J., Roy, M., Martcheva, M., 2009. An avian influenza model and its fit to human avian influenza cases, 1-30. Advances in Disease Epidemiology, Jean Michel Tchuenche and Zindoga Mukandavire (Eds.), Nova Science Publishers — March 2010, 160741452X : 9781607414520
[21] Munster, V.; Baas, C.; Lexmond, P.; Waldenström, J.; Wallensten, A., Temporal, and species variation in prevalence of influenza a viruses in wild migratory birds, Plos pathog., 13, (2007)
[22] Pasick, J.; Berhane, Y.; Embury-Hyatt, C., Susceptibility of Canada geese to highly pathogenic Avian influenza virus, Emerg. infect. dis., 13, (2007)
[23] Rohania, P.; Brebana, R.; Stallknechte, D.E.; Drakea, J.M., Environmental transmission of low pathogenicity Avian influenza viruses and its implications for pathogen invasion, Proc. natl. acad. sci., 106, 10365-10369, (2009)
[24] Schaefer, J.M., Cohen, J., Hostetle, M.E., 2009. The wood duck. UF/IFAS EDIS Web. URL \(\langle\)http://edis.ifas.ufl.edu/uw180#FOOTNOTE_2〉.
[25] Seo, S.H.; Webster, R.G., Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets, J. virol., 75, 2516-2525, (2001)
[26] Spackman, E.; Swayne, D.E.; Suarez, D.L.; Senne, D.A.; Pedersen, J.C.; Killian, M.L.; Pasick, J.; Handel, K.; Somanathan Pillai, S.P.; Lee, C.-W.; Stallknecht, D.; Slemons, R.; Ip, H.S.; Deliberto, T., Characterization of low pathogenicity H5N1 Avian influenza viruses from north America, J. virol., 81, 21, 11612-11619, (2007)
[27] Stallknecht, D.E., Ecology and epidemiology of Avian influenza viruses in wild bird populations: waterfowl, shorebirds, pelicans, cormorants, etc, Avian dis., 47, 61-69, (1997)
[28] Stallknecht, D.E.; Brown, J.D., Wild birds and the epidemiology of Avian influenza, J. wild life dis., 43, S15-S20, (2007)
[29] Swayne, D.; Suarez, D., Highly pathogenic Avian influenza, Rev. sci. tech., 19, 463-482, (2000)
[30] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. biosci., 180, 29-48, (2002) · Zbl 1015.92036
[31] Webster, R.; Bean, W.; Gorman, O.; Chambers, T.; Kawaoka, Y., Evolution and ecology of influenza a viruse, Macrobiol. rev. K, 56, March, 152-179, (1992)
[32] WHO, 2008. Avian influenza situation in Pakistan—update 2. Technical Report, World Health Organization. URL \(\langle\)http://www.who.int/csr/don/2008_04_03/en/index.html〉.
[33] WHO-EPAR, 2009. H5N1 avian influenza: timeline of major events. Technical Report, World Health Organization, Epidemic and Pandemic Alert and Response. URL \(\langle\)http://www.who.int/csr/disease/avian_influenza/ai_timeline/en/〉.
[34] WHO, Mar 2010. World Health Organization. Cumulative number of confirmed human cases of avian influenza a/(H5N1) reported to who. URL \(\langle\)http://www.who.int/csr/disease/avian_influenza/country/cases_table_2010_03_16/en/index.html〉.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.