×

Fractional normal inverse Gaussian process. (English) Zbl 1405.60051

Summary: Normal inverse Gaussian (NIG) process was introduced by O. E. Barndorff-Nielsen [Scand. J. Stat. 24, No. 1, 1–13 (1997; Zbl 0934.62109)] by subordinating Brownian motion with drift to an inverse Gaussian process. Increments of NIG process are independent and are stationary. In this paper, we introduce dependence between the increments of NIG process, by subordinating fractional Brownian motion to an inverse Gaussian process and call it fractional normal inverse Gaussian (FNIG) process. The basic properties of this process are discussed. Its marginal distributions are scale mixtures of normal laws, infinitely divisible for the Hurst parameter \(1/2 \leq H < 1\) and are heavy tailed. First order increments of the process are stationary and possess long-range dependence (LRD) property. It is shown that they have persistence of signs LRD property also. A generalization to an \(n\)-FNIG process is also discussed, which allows Hurst parameter \(H\) in the interval \((n - 1, n)\). Possible applications to mathematical finance and hydraulics are also pointed out.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G07 General theory of stochastic processes
60G15 Gaussian processes

Citations:

Zbl 0934.62109

Software:

longmemo
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Applebaum D (2004) Levy processes and stochastic calculus. Cambridge University Press, Cambridge · Zbl 1073.60002
[2] Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modeling. Scand J Statist 24:1–13 · Zbl 0934.62109 · doi:10.1111/1467-9469.t01-1-00045
[3] Beran J (1994) Statistics for long-memory processes. Chapman &amp; Hall, New York · Zbl 0869.60045
[4] Bertoin J (1996) Levy processes. Cambridge University Press, Cambridge
[5] Bondesson L (1979) A general result on infinite divisibility. Ann Probab 7(6):965–979 · Zbl 0421.60014 · doi:10.1214/aop/1176994890
[6] Clark PK (1973) A subordinated process model with finite variance for speculative prices. Econometrica 41:135–155 · Zbl 0308.90011 · doi:10.2307/1913889
[7] Cont R, Tankov P (2004) Financial modeling with jump processes. Chapman &amp; Hall CRC Press, Boca Raton · Zbl 1052.91043
[8] Devroye L (1986) Nonuniform random variate generation. Springer, New York · Zbl 0593.65005
[9] Embrechts P, Maejima M (2002) Selfsimilar processes. Princeton University Press, Princeton · Zbl 1008.60003
[10] Feller W (1971) Introduction to probability theory and its applications, vol II. Wiley, New York · Zbl 0219.60003
[11] Halgreen C (1979) Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z Wahrscheinlichkeitstheor Verw Geb 47:13–17 · Zbl 0386.60017 · doi:10.1007/BF00533246
[12] Heyde CC (1999) A risky asset model with strong dependence through fractal activity time. J Appl Probab 34(4):1234–1239 · Zbl 1102.62345
[13] Heyde CC (2002) On modes of long-range dependence. J Appl Probab 39:882–888 · Zbl 1016.60040 · doi:10.1239/jap/1037816026
[14] Heyde CC, Leonenko NN (2005) Student processes. Adv Appl Probab 37:342–365 · Zbl 1081.60035 · doi:10.1239/aap/1118858629
[15] Jørgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in Statistics, vol 9. Springer-Verlag, New York · Zbl 0486.62022
[16] Kelker D (1971) Infinite divisibility and variance mixtures of the normal distribution. Ann Math Statist 42:802–808 · Zbl 0234.60009 · doi:10.1214/aoms/1177693436
[17] Kozubowski TJ, Meerschaert MM, Podgorski K (2006) Fractional Laplace motion. Adv Appl Prob 38:451–464 · Zbl 1100.60017 · doi:10.1239/aap/1151337079
[18] Linde W, Shi Z (2004) Evaluating the small deviation probabilities for subordinated Levy processes. Stoch Process Their Appl 113:273–287 · Zbl 1076.60039 · doi:10.1016/j.spa.2004.04.001
[19] Madan DB, Seneta E (1990) The variance gamma (V.G.) model for share markets returns. J Bus 63:511–524 · doi:10.1086/296519
[20] Madan DB, Carr P, Chang EC (1998) The variance gamma process and option pricing. European Finance Review 2:74–105 · Zbl 0937.91052
[21] Mandelbrot BB (2001) Scaling in financial prices: I. Tails and dependence. Quantitative Finance 1:113–123 · doi:10.1080/713665539
[22] Mandelbrot BB, Taylor H (1967) On the distribution of stock price differences. Oper Res 15:1057–1062 · doi:10.1287/opre.15.6.1057
[23] Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motion, fractional noises and applications. SIAM Rev 10:422–438 · Zbl 0179.47801 · doi:10.1137/1010093
[24] Mandelbrot BB, Fisher A, Calvet L (1997) A multifractal model of asset returns. Cowles Foundation discussion paper no. 1164
[25] Meerschaert MM, Kozubowski TJ, Molz FJ, Lu S (2004) Fractional Laplace model for hydraulic conductivity. Geophys Res Lett 31:L08501
[26] Molz FJ, Bowman GK (1993) A fractal-based stochastic interpolation scheme in subsurface hydrology. Water Resour Res 32:1183–1195
[27] Painter S (1996) Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resour Res 32:1183–1195 · doi:10.1029/96WR00286
[28] Perrin E, Harba R, Berzin-Joseph C, Iribarren I, Bonami A (2001) nth-Order fractional Brownian motion and fractional Gaussian noises. IEEE Trans Signal Process 49:1049–1059 · doi:10.1109/78.917808
[29] Samorodnitsky G, Taqqu MS (2000) Stable non-Gaussian random processes: stochastic models with infinite variance. CRC Press, Boca Raton
[30] Sato K (2001) Subordination and self-decomposability. Stat Probab Lett 54(3):317–324 · Zbl 0995.60046 · doi:10.1016/S0167-7152(01)00110-9
[31] Shephard N (1995) Statistical aspects of ARCH and stochastic volatility. In time series models. In: Cox DR, Hinkley DV, Barndorff-Nielsen OE (eds) Econometrics, finance and others fields. Chapman &amp; Hall, London, pp 1–67
[32] Steutel FW, Van Harn K (2004) Infinite divisibility of probability distributions on the real line. Marcel Dekker, New York · Zbl 1063.60001
[33] Thorin O (1978) An extension of the notion of a generalized gamma convolution. Scand Actuar J 3:141–149 · Zbl 0392.60015 · doi:10.1080/03461238.1978.10432021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.