zbMATH — the first resource for mathematics

Colored HOMFLY-PT polynomials that distinguish mutant knots. (English) Zbl 1405.57017
Let \(K\) be a knot in \(S^3\), and let \(S\) be a sphere that intersects \(K\) transversely in four points, dividing it into two 2-string tangles. Let \(K'\) be the knot obtained by cutting along \(S\), rotating one of the tangles \(180^\circ\) along one of the axes \(x\), \(y\), or \(z\), and gluing it back. \(K\) and \(K'\) are called a mutant pair. It is known that many polynomial invariants, like the Jones, HOMFLY-PT and Kauffman polynomials do not distinguish between pairs of mutant knots. In this paper it is explained how certain quantum colored HOMFLY-PT polynomials with multiplicity structure can distinguish between mutant knots. In particular, an explicit calculation is made of a colored HOMPLY-PT polynomial of the Kinoshita-Terasaka and Conway knots, a famous pair of mutant knots, showing that they have different polynomials.

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57R56 Topological quantum field theories (aspects of differential topology)
Full Text: DOI
[1] Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, A., Knot polynomials in the first non-symmetric representation, Nucl. Phys. B, 882, 171-194, (2014) · Zbl 1285.81035
[2] Anokhina, A.; Morozov, A., Cabling procedure for the colored HOMFLY-PT polynomials, Teor. Mat. Fiz., 178, 3, (2014) · Zbl 1318.81055
[3] Conway, J. H., Computational Problems in Abstract Algebra, An enumeration of knots and links, and some of their algebraic properties, (1970), Pergamon Press, Oxford · Zbl 0202.54703
[4] J. Gu and H. Jockers, A note on colored HOMFLY-PT polynomials for hyperbolic knots from WZW models, preprint (2014), arXiv:1407.5643. · Zbl 1328.81193
[5] Gu, J.; Jockers, H.; Klemm, A.; Soroush, M., Knot invariants from topological recursion on augmentation varieties, Comm. Math. Phys., 336, 2, 987-1051 · Zbl 1323.57008
[6] Jones, V. F. R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12, 103-111, (1985) · Zbl 0564.57006
[7] Kaul, R.; Govindarajan, T., Three-dimensional Chern-Simons theory as a theory of knots and links, Nucl. Phys. B, 380, 293-336, (1992) · Zbl 0938.81553
[8] Kaul, R.; Govindarajan, T., Three-dimensional Chern-Simons theory as a theory of knots and links. 2. multicolored links, Nucl. Phys. B, 393, 392-412, (1993) · Zbl 1245.57011
[9] Kirillov, A. N.; Reshetikhin, N. Y.; Kohno, T., New Developments in the Theory of Knots, Representations of the algebra \(U_q(s l(2))\), \(q\)-orthogonal polynomials and invariants of links, (1989), World Scientific, Singapore
[10] Kohno, T., Conformal field theory and topology, 210, (2002), American Mathematical Society, Providence, RI
[11] Mironov, A.; Morozov, A.; Morozov, A., On colored HOMFLY-PT polynomials for twist knots, Mod. Phys. Lett. A, 29, 1450183, (2014) · Zbl 1302.81134
[12] Mironov, A.; Morozov, A.; Morozov, A.; Ramadevi, P.; Singh, V. K., Colored HOMFLY-PT polynomials and the double fat diagrams in effective topological knot theory, J. High Energy Phys., 1507, 109, (2015) · Zbl 1388.57010
[13] Morton, H. R., Mutant knots with symmetry, Math. Proc. Cambridge Philos. Soci., 146, 1, 95-107, (2009) · Zbl 1169.57010
[14] Morton, H. R.; Cromwell, P. R., Distinguishing mutants by knot polynomials, J. Knot Theor. Ramifications, 5, 2, 225-238, (1996) · Zbl 0866.57002
[15] Morton, H. R.; Ryder, H. J., Mutants and \(S U(3)_q\) invariants, Geom. Topol. Monogr., 1, 365-381, (1998) · Zbl 0901.57002
[16] Murakami, J., The parallel version of polynomial invariants of links, Osaka J. Math., 26, 1, 1-55, (1989) · Zbl 0704.57003
[17] J. Murakami, Finite type invariants detecting the mutant knots, preprint (2000), http://www.f.waseda.jp/murakami/papers/finitetype.pdf.
[18] Nawata, S.; Ramadevi, P.; Zodinmawia, Colored HOMFLY-PT polynomials from Chern-Simons theory, J. Knot Theor. Ramifications, 22, 1350078, (2013) · Zbl 1296.57015
[19] Nawata, S.; Ramadevi, P.; Zodinmawia, Multiplicity-free quantum \(6 j\)-symbols for \(U_q(s l_N)\), Lett. Math. Phys., 103, 1389-1398, (2013) · Zbl 1330.17020
[20] M. Ochiai, Knot Theory by Computer 3.6.
[21] Ochiai, M.; Murakami, J., Subgraphs of \(W\)-graphs and the \(3\)-parallel version polynomial invariants of links, Proc. Japan Acad. Ser. Math. Sci., 70, 8, 267-270, (1994) · Zbl 0849.57008
[22] Ramadevi, P.; Govindarajan, T.; Kaul, R., Three-dimensional Chern-Simons theory as a theory of knots and links. 3. compact semisimple group, Nucl. Phys. B, 402, 548-566, (1993) · Zbl 0941.57500
[23] Ramadevi, P.; Govindarajan, T.; Kaul, R., Representations of composite braids and invariants for mutant knots and links in Chern-Simons field theories, Mod. Phys. Lett. A, 10, 1635-1658, (1995) · Zbl 1020.57510
[24] Reshetikhin, N. Y.; Turaev, V. G., Ribbon graphs and their invaraints derived from quantum groups, Comm. Math. Phys., 127, 1, 1-26, (1990) · Zbl 0768.57003
[25] S. M. Wehrli, Khovanov homology and Conway mutation, preprint (2003), arXiv:math/0301312.
[26] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys., 121, 351-399, (1989) · Zbl 0667.57005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.