# zbMATH — the first resource for mathematics

The parameter identification problem for SIR epidemic models: identifying unreported cases. (English) Zbl 1404.92194
Summary: A SIR epidemic model is analyzed with respect to identification of its parameters, based upon reported case data from public health sources. The objective of the analysis is to understand the relation of unreported cases to reported cases. In many epidemic diseases the ratio of unreported to reported cases is very high, and of major importance in implementing measures for controlling the epidemic. This ratio can be estimated by the identification of parameters for the model from reported case data. The analysis is applied to three examples: (1) the Hong Kong seasonal influenza epidemic in New York City in 1968-1969, (2) the bubonic plague epidemic in Bombay, India in 1906, and (3) the seasonal influenza epidemic in Puerto Rico in 2016-2017.

##### MSC:
 92D30 Epidemiology
Full Text:
##### References:
 [1] Anderson RM, May RM (1991) Infective diseases of humans: dynamics and control. Oxford University Press, Oxford [2] Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, vol 151. Springer lecture notes in statistics. Springer, New York · Zbl 0951.92021 [3] Andreasen, V., The final size of an epidemic and its relation to the basic reproduction number, Bull Math Biol, 73, 2305-2321, (2011) · Zbl 1334.92388 [4] Arino, J.; Brauer, F.; Driessche, P.; Watmough, J.; Wu, J., A final size relation for epidemic models, Math Biosci Eng, 4, 159-175, (2007) · Zbl 1123.92030 [5] Bacaër, N., The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproductive number with seasonality, J Math Biol, 64, 403-422, (2012) · Zbl 1284.92099 [6] Bailey NTJ (1957) The mathematical theory of epidemics. Charles Griffin, London [7] Becker N (1989) Analysis of infectious disease data. Monographs on statistics and applied probabilty. Chapman and Hall, London [8] Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir, Mém. Math Phys Acad R Sci Paris 1-45 [9] Biggerstaff M, Balluz L (2011) Self-reported influenza-like illness during the 2009 H1N1 influenza pandemic, United States, Morbid Mortal Weekly Report, Sept 2009-March 2010, vol 60, p 37 [10] Blaser, M.; Hsieh, Y-H; Webb, GF; Wu, J., Pre-symptomatic influenza transmission, surveillance, and school closings: implications for novel influenza A (H1N1), Math Mod Nat Phen, 3, 191-205, (2010) · Zbl 1187.92065 [11] Brauer F, Castillo-Chavez C (2000) Mathematical models in population biology and epidemiology. Springer, New York · Zbl 0967.92015 [12] Brauer F, van den Driessche P, Wu J (eds) (2008) Mathematical epidemiology. Springer, Berlin · Zbl 1206.92023 [13] Busenberg S, Cooke K (1993) Vertically transmitted diseases: models and dynamics, vol 23. Lecture notes in biomathematics. Springer, Berlin · Zbl 0837.92021 [14] Capistran, M.; Moreles, M.; Lara, B., Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus, Bull Math Biol, 71, 1890-1901, (2009) · Zbl 1179.92036 [15] Carrat, F.; Vergu, E.; Ferguson, NM; Lemaitre, M.; Cauchemez, S.; Leach, S.; Valleron, A-J, Time lines of infection and disease in human influenza: a review of volunteer challenge studies, Am J Epidemiol, 167, 775-785, (2008) [16] Chowell, G.; Shim, E.; Brauer, F.; Diaz-Dueñas, P.; Hyman, JM; Castillo-Chavez, C., Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico, Stat Med, 25, 1840-1857, (2003) [17] Chowell, G.; Diaz-Dueñas, P.; Miller, JC; Alcazar-Velazco, A.; Hyman, JM; Fenimore, PW; Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic data, Math Biosci, 208, 571-589, (2007) · Zbl 1119.92055 [18] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproduction ratio $${\mathbb{R}}_0$$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28, 365-382, (1990) · Zbl 0726.92018 [19] Diekmann O, Heesterbeek H, Britton T (2013) Mathematical tools for understanding infectious disease dynamics. Princeton University Press, Princeton · Zbl 1304.92009 [20] Dietz, K.; Heesterbeek, JAP, Bernoulli was ahead of modern epidemiology, Nature, 408, 513-514, (2000) [21] Dietz, K.; Heesterbeek, JAP, Daniel Bernoulli’s epidemiological model revisited, Math Biosci, 180, 1-21, (2002) · Zbl 1019.92028 [22] Evans, ND; White, LJ; Chapman, MJ; Godfrey, KR; Chappell, M., The structural identifiability of the susceptible infected recovered model with seasonal forcing, Math Biosci, 194, 175-197, (2005) · Zbl 1065.92040 [23] Fitzgibbon, WE; Morgan, JJ; Webb, GF, An outbreak vector-host epidemic model with spatial structure: the 2015-2016 zika outbreak in Rio de Janeiro, Theor Biol Med Mod, (2017) [24] Gamado, KM; Streftaris, G.; Zachary, S., Modelling under-reporting in epidemics, J Math Biol, 69, 737-765, (2014) · Zbl 1302.92128 [25] Grassly, N.; Fraser, C., Seasonal infectious disease epidemiology, Proc R Soc Lond B Biol Sci, 273, 2541-2550, (2006) [26] Hadeler, KP, Parameter identification in epidemic models, Math Biosci, 229, 185-189, (2011) · Zbl 1208.92067 [27] Hadeler, KP, Parameter estimation in epidemic models: simplified formulas, Can Appl Math Q, 19, 343-356, (2011) [28] Hethcote, HW, Qualitative analyses of communicable disease models, Math Biosci, 28, 335-356, (1976) · Zbl 0326.92017 [29] Hethcote, H.; Isham, V. (ed.); Medley, G. (ed.), Modeling heterogeneous mixing in infectious disease dynamics, (1996), Cambridge · Zbl 0884.92025 [30] Hethcote, HW, The mathematics of infectious diseases, SIAM Rev, 42, 599-653, (2000) · Zbl 0993.92033 [31] Hooker, G.; Ellner, SP; Vargas Roditi, L.; Earn, DJD, Parameterizing state space models for infectious disease dynamics by generalized profiling: measles in Ontario, J R Soc Interface, 8, 961-974, (2011) [32] Hsieh, Y-H; Fisma, D.; Wu, J., On epidemic modeling in real time: an application to the 2009 Novel A (H1N1) influenza outbreak in Canada, BMC Res Notes, 3, 283, (2010) [33] Keeling M, Rohani P (2007) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton · Zbl 1279.92038 [34] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics, Proc R Soc Lond A, 115, 700-721, (1927) · JFM 53.0517.01 [35] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics: II, Proc R Soc Lond A, 138, 55-83, (1932) · JFM 58.1561.04 [36] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics: III, Proc R Soc Lond A, 141, 94-112, (1933) · Zbl 0007.31502 [37] Lange, A., Reconstruction of disease transmission rates: applications to measles, dengue, and influenza, J Theor Biol, 400, 138-153, (2016) · Zbl 1343.92488 [38] Li, J.; Lou, Y., Characteristics of an epidemic outbreak with a large initial infection size, J Biol Dyn, 10, 366-378, (2016) [39] Li, FCK; Choi, BCK; Sly, T.; Pak, AWP, Finding the real case-fatality rate of H5N1 avian influenza, J Epidemiol Commun Health, 10, 555-559, (2008) [40] Macdonald G (1957) The epidemiology and control of malaria, in epidemics. Oxford University Press, London [41] Ma, J.; Earn, DJD, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull Math Biol, 68, 679-702, (2006) · Zbl 1334.92419 [42] Magal, P.; Seydi, O.; Webb, G., Final size of an epidemic for a two-group SIR model, SIAM J Appl Math, 76, 2042-2059, (2016) · Zbl 1350.92053 [43] Magal P, Webb G, Wu Y. Spatial spread of epidemic diseases in geographical settings: seasonal influenza epidemics in Puerto Rico (Submitted). arXiv:1801.01856 [44] Mummert, A., Studying the recovery procedure for the time-dependent transmission rate(s) in epidemic models, J Math Biol, 67, 483-507, (2013) · Zbl 1271.92032 [45] Murray JD (1993) Mathematical biology. Springer, Berlin · Zbl 0779.92001 [46] Pellis, L.; Ferguson, NM; Fraser, C., Threshold parameters for a model of epidemic spread among households and workplaces, J R Soc Interface, 6, 979-987, (2009) [47] Pollicott, M.; Wang H, H.; Weiss, H., Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem, J Biol Dyn, 6, 509-523, (2012) [48] Reed, C.; Angulo, FJ; Swerdlow, DL; Lipsitch, M.; Meltzer, MI; Jernigan, D.; Finelli, L., Estimates of the prevalence of pandemic (H1N1) 2009, United States, April-July 2009, Emerg Infect Dis, 15, 2004-2008, (2009) [49] Roeger, LIW; Feng, Z.; Castillo-Chavez, C., Modeling TB and HIV co-infections, Math Biosci Eng, 6, 815-837, (2009) · Zbl 1194.92054 [50] Ross R (1910) The prevention of malaria. John Murray, London [51] Shrestha, SS; Swerdlow, DL; Borse, RH; Prabhu, VS; Finelli, L.; Atkins, CY; Owusu-Edusei, K.; Bell, B.; Mead, PS; Biggerstaff, M.; Brammer, L.; Davidson, H.; Jernigan, D.; Jhung, MA; Kamimoto, LA; Merlin, TL; Nowell, M.; Redd, SC; Reed, C.; Schuchat, A.; Meltzer, MI, Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009-April 2010), Clin Infect Dis, 52, s75-s82, (2011) [52] Stadler, T.; Kühnert, D.; Bonhoeffer, S.; Drummond, AJ, Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus, PNAS, 110, 228-233, (2013) [53] Smith D, Moore L (2004) The SIR model for spread of disease—background: Hong Kong flu. J Online Math Appl [54] Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton · Zbl 1054.92042 [55] Thompson, JA, On the epidemiology of plague, J Hyg, 6, 537-569, (1906) [56] Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48, (2002) · Zbl 1015.92036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.