×

Symmetries and charges of general relativity at null boundaries. (English) Zbl 1404.83016

J. High Energy Phys. 2018, No. 11, Paper No. 125, 68 p. (2018); erratum ibid. 2023, No. 7, Paper No. 224, 1 p. (2023).
Summary: We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.

MSC:

83C22 Einstein-Maxwell equations
83C57 Black holes
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[2] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A270 (1962) 103 [INSPIRE]. · Zbl 0101.43605
[3] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851, (1962) · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[4] He, T.; Mitra, P.; Porfyriadis, AP; Strominger, A., New Symmetries of Massless QED, JHEP, 10, 112, (2014) · doi:10.1007/JHEP10(2014)112
[5] Kapec, D.; Pate, M.; Strominger, A., New Symmetries of QED, Adv. Theor. Math. Phys., 21, 1769, (2017) · Zbl 1383.81351 · doi:10.4310/ATMP.2017.v21.n7.a7
[6] R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev.D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE]. · Zbl 1136.83317
[7] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[8] Ashtekar, A.; Streubel, M., Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond., A376, 585, (1981) · doi:10.1098/rspa.1981.0109
[9] Dray, T.; Streubel, M., Angular momentum at null infinity, Class. Quant. Grav., 1, 15, (1984) · Zbl 1136.83316 · doi:10.1088/0264-9381/1/1/005
[10] Donnay, L.; Giribet, G.; González, HA; Pino, M., Extended Symmetries at the Black Hole Horizon, JHEP, 09, 100, (2016) · Zbl 1390.83191 · doi:10.1007/JHEP09(2016)100
[11] L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett.116 (2016) 091101 [arXiv:1511.08687] [INSPIRE]. · Zbl 1390.83191
[12] Eling, C.; Oz, Y., On the Membrane Paradigm and Spontaneous Breaking of Horizon BMS Symmetries, JHEP, 07, 065, (2016) · Zbl 1390.83193 · doi:10.1007/JHEP07(2016)065
[13] Cai, R-G; Ruan, S-M; Zhang, Y-L, Horizon supertranslation and degenerate black hole solutions, JHEP, 09, 163, (2016) · Zbl 1390.83181 · doi:10.1007/JHEP09(2016)163
[14] S.W. Hawking, The Information Paradox for Black Holes, 2015, arXiv:1509.01147 [INSPIRE]. · Zbl 1118.83010
[15] Hawking, SW; Perry, MJ; Strominger, A., Superrotation Charge and Supertranslation Hair on Black Holes, JHEP, 05, 161, (2017) · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[16] Hawking, SW; Perry, MJ; Strominger, A., Soft Hair on Black Holes, Phys. Rev. Lett., 116, 231301, (2016) · doi:10.1103/PhysRevLett.116.231301
[17] Carlip, S., Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon, Phys. Rev. Lett., 120, 101301, (2018) · doi:10.1103/PhysRevLett.120.101301
[18] Blau, M.; O’Loughlin, M., Horizon Shells and BMS-like Soldering Transformations, JHEP, 03, 029, (2016) · Zbl 1388.83393 · doi:10.1007/JHEP03(2016)029
[19] Penna, RF, Near-horizon BMS symmetries as fluid symmetries, JHEP, 10, 049, (2017) · Zbl 1383.83075 · doi:10.1007/JHEP10(2017)049
[20] D. Grumiller and M.M. Sheikh-Jabbari, Membrane Paradigm from Near Horizon Soft Hair, arXiv:1805.11099 [INSPIRE].
[21] J.-i. Koga, Asymptotic symmetries on Killing horizons, Phys. Rev.D 64 (2001) 124012 [gr-qc/0107096] [INSPIRE].
[22] P. Mao, X. Wu and H. Zhang, Soft hairs on isolated horizon implanted by electromagnetic fields, Class. Quant. Grav.34 (2017) 055003 [arXiv:1606.03226] [INSPIRE]. · Zbl 1368.83043
[23] Penna, RF, BMS invariance and the membrane paradigm, JHEP, 03, 023, (2016) · Zbl 1388.83496 · doi:10.1007/JHEP03(2016)023
[24] Strominger, A.; Zhiboedov, A., Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP, 01, 086, (2016) · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[25] Hollands, S.; Ishibashi, A.; Wald, RM, BMS Supertranslations and Memory in Four and Higher Dimensions, Class. Quant. Grav., 34, 155005, (2017) · Zbl 1373.83033 · doi:10.1088/1361-6382/aa777a
[26] Bousso, R., A Covariant entropy conjecture, JHEP, 07, 004, (1999) · Zbl 0951.83011 · doi:10.1088/1126-6708/1999/07/004
[27] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev.D 85 (2012) 104049 [Erratum ibid.D 87 (2013) 069904] [arXiv:1105.3445] [INSPIRE].
[28] H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys.A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE]. · Zbl 1376.81066
[29] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
[30] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev.D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
[31] F. Hopfmüller and L. Freidel, Gravity Degrees of Freedom on a Null Surface, Phys. Rev.D 95 (2017) 104006 [arXiv:1611.03096] [INSPIRE].
[32] Wieland, W., New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav., 34, 215008, (2017) · Zbl 1380.83103 · doi:10.1088/1361-6382/aa8d06
[33] Wieland, W., Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Annales Henri Poincaré, 18, 3695, (2017) · Zbl 1390.83077 · doi:10.1007/s00023-017-0598-6
[34] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102, (2016) · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[35] Speranza, AJ, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP, 02, 021, (2018) · Zbl 1387.83011 · doi:10.1007/JHEP02(2018)021
[36] F. Hopfmüller and L. Freidel, Null Conservation Laws for Gravity, Phys. Rev.D 97 (2018) 124029 [arXiv:1802.06135] [INSPIRE].
[37] P.R. Brady, S. Droz, W. Israel and S.M. Morsink, Covariant double null dynamics: (2+2) splitting of the Einstein equations, Class. Quant. Grav.13 (1996) 2211 [gr-qc/9510040] [INSPIRE]. · Zbl 0858.53062
[38] R.J. Epp, The Symplectic structure of general relativity in the double null (2+2) formalism, gr-qc/9511060 [INSPIRE].
[39] M.P. Reisenberger, The Symplectic 2-form and Poisson bracket of null canonical gravity, gr-qc/0703134 [INSPIRE].
[40] Parattu, K.; Chakraborty, S.; Majhi, BR; Padmanabhan, T., A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav., 48, 94, (2016) · Zbl 1386.83018 · doi:10.1007/s10714-016-2093-7
[41] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking and W. Israel eds., pp. 676-684. Cambridge University Press (1987) [INSPIRE]. · Zbl 0966.81533
[42] A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, in Mechanics, Analysis and Geometry: 200 Years After Lagrange, M. Francaviglia, ed., North-Holland Delta Series, pp. 417-450, Elsevier, Amsterdam (1991) [INSPIRE]. · Zbl 0717.53056
[43] Lee, J.; Wald, RM, Local symmetries and constraints, J. Math. Phys., 31, 725, (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[44] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[45] I. Khavkine, Covariant phase space, constraints, gauge and the Peierls formula, Int. J. Mod. Phys.A 29 (2014) 1430009 [arXiv:1402.1282] [INSPIRE]. · Zbl 1284.70003
[46] M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys.B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE]. · Zbl 1373.81284
[47] K. Prabhu, The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav.34 (2017) 035011 [arXiv:1511.00388] [INSPIRE]. · Zbl 1358.83058
[48] V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev.D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
[49] M.D. Seifert and R.M. Wald, A General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories, Phys. Rev.D 75 (2007) 084029 [gr-qc/0612121] [INSPIRE].
[50] R.M. Wald, General Relativity, The University of Chicago Press (1984) [INSPIRE].
[51] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[52] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press (1993) [INSPIRE]. · Zbl 0827.53055
[53] Szabados, LB, Quasi-Local Energy-Momentum and Angular Momentum in General Relativity, Living Rev. Rel., 12, 4, (2009) · Zbl 1215.83010 · doi:10.12942/lrr-2009-4
[54] É. É. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev.D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].
[55] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE]. · Zbl 0862.53068
[56] Wald, RM, On identically closed forms locally constructed from a field, J. Math. Phys., 31, 2378, (1990) · Zbl 0728.53064 · doi:10.1063/1.528839
[57] A. Ashtekar, C. Beetle and J. Lewandowski, Geometry of generic isolated horizons, Class. Quant. Grav.19 (2002) 1195 [gr-qc/0111067] [INSPIRE]. · Zbl 0998.83012
[58] E. Gourgoulhon and J.L. Jaramillo, A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rept.423 (2006) 159 [gr-qc/0503113] [INSPIRE].
[59] Bardeen, JM; Carter, B.; Hawking, SW, The Four laws of black hole mechanics, Commun. Math. Phys., 31, 161, (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[60] A. Ashtekar, Geometry and Physics of Null Infinity, arXiv:1409.1800 [INSPIRE]. · Zbl 1339.83002
[61] M. Hotta, K. Sasaki and T. Sasaki, Diffeomorphism on horizon as an asymptotic isometry of Schwarzschild black hole, Class. Quant. Grav.18 (2001) 1823 [gr-qc/0011043] [INSPIRE]. · Zbl 0985.83013
[62] D. Lüst, Supertranslations and Holography near the Horizon of Schwarzschild Black Holes, Fortsch. Phys.66 (2018) 1800001 [arXiv:1711.04582] [INSPIRE].
[63] S. Hou, Asymptotic Symmetries of the Null Infinity and the Isolated Horizon, arXiv:1704.05701 [INSPIRE].
[64] E. Morales, On a Second Law of Black Hole Mechanics in a Higher Derivative Theory of Gravity, Ph.D. Thesis, University of Gottingen, (2008).
[65] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152, (2014) · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[66] A. Strominger, Black Hole Information Revisited, arXiv:1706.07143 [INSPIRE]. · Zbl 0972.83566
[67] Ashtekar, A.; Magnon-Ashtekar, A., Energy-Momentum in General Relativity, Phys. Rev. Lett., 43, 181, (1979) · Zbl 0504.53049 · doi:10.1103/PhysRevLett.43.181
[68] Campiglia, M., Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime, JHEP, 11, 160, (2015) · Zbl 1388.81297 · doi:10.1007/JHEP11(2015)160
[69] M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP11 (2017) 168 [arXiv:1703.07884] [INSPIRE]. · Zbl 1383.81127
[70] C. Troessaert, The BMS4 algebra at spatial infinity, Class. Quant. Grav.35 (2018) 074003 [arXiv:1704.06223] [INSPIRE]. · Zbl 1390.83074
[71] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP, 10, 113, (2018) · Zbl 1402.83034 · doi:10.1007/JHEP10(2018)113
[72] Brown, JD; Henneaux, M., Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys., 104, 207, (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[73] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE]. · Zbl 0995.81054
[74] G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys.49 (2008) 042901 [arXiv:0708.2378] [INSPIRE]. · Zbl 1152.81327
[75] V.I. Arnol’d, Mathematical methods of classical mechanics, Graduate Texts in Mathematicals, Springer, New York, NY (1978).
[76] G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 (2010) [arXiv:1102.4632] [INSPIRE].
[77] H. Goldstein, C. Poole and J. Safko, Classical mechanics, Addison-Wesley (2002). · Zbl 1132.70001
[78] Brown, JD; Henneaux, M., On the Poisson Brackets of Differentiable Generators in Classical Field Theory, J. Math. Phys., 27, 489, (1986) · doi:10.1063/1.527249
[79] A. Seraj, Conserved charges, surface degrees of freedom and black hole entropy, Ph.D. Thesis, IPM, Tehran (2016) [arXiv:1603.02442] [INSPIRE].
[80] H.-Y. Guo, C.-G. Huang and X.-n. Wu, Noether charge realization of diffeomorphism algebra, Phys. Rev.D 67 (2003) 024031 [gr-qc/0208067] [INSPIRE].
[81] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105, (2011) · Zbl 1306.83002 · doi:10.1007/JHEP12(2011)105
[82] A. Strominger, Progress and Questions in Soft Physics, presentation at Strings 2018, https://indico.oist.jp/indico/event/5/picture/106.pdf.
[83] S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black Hole Entropy and Soft Hair, arXiv:1810.01847 [INSPIRE].
[84] A. Ashtekar, J. Engle, T. Pawlowski and C. Van Den Broeck, Multipole moments of isolated horizons, Class. Quant. Grav.21 (2004) 2549 [gr-qc/0401114] [INSPIRE]. · Zbl 1052.83005
[85] V. Chandrasekaran, É. É. Flanagan and K. Prabhu, in preparation.
[86] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem, arXiv:1502.07644 [INSPIRE]. · Zbl 1382.83087
[87] Pate, M.; Raclariu, A-M; Strominger, A., Gravitational Memory in Higher Dimensions, JHEP, 06, 138, (2018) · Zbl 1395.83100 · doi:10.1007/JHEP06(2018)138
[88] S. Hollands and A. Ishibashi, Asymptotic flatness and Bondi energy in higher dimensional gravity, J. Math. Phys.46 (2005) 022503 [gr-qc/0304054] [INSPIRE]. · Zbl 1076.83010
[89] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, 111103, (2010) · doi:10.1103/PhysRevLett.105.111103
[90] Campiglia, M.; Laddha, A., New symmetries for the Gravitational S-matrix, JHEP, 04, 076, (2015) · Zbl 1388.83094 · doi:10.1007/JHEP04(2015)076
[91] G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, arXiv:1810.00377 [INSPIRE].
[92] Hayward, SA, The general solution to the Einstein equations on a null surface, Class. Quant. Grav., 10, 773, (1993) · Zbl 0767.34001 · doi:10.1088/0264-9381/10/4/012
[93] L. Barack, Late time decay of scalar, electromagnetic and gravitational perturbations outside rotating black holes, Phys. Rev.D 61 (2000) 024026 [gr-qc/9908005] [INSPIRE]. · Zbl 0949.83044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.