zbMATH — the first resource for mathematics

Two-dimensional simulations of turbulent flow past a row of cylinders using lattice Boltzmann method. (English) Zbl 1404.76213

76M28 Particle methods and lattice-gas methods
76D25 Wakes and jets
76Fxx Turbulence
Full Text: DOI
[1] Abdel Kareem, W.; Nabil, T.; Izawa, S.; Fukunishi, Y., Multiresolution and nonlinear diffusion filtering of homogeneous isotropic turbulence, Int. J. Comput. Methods, 11, 1, 1350054, (2014) · Zbl 1359.76123
[2] Agrawal, A.; Djenidi, L.; Antonia, R. A., Investigation of flow around a pair of side-by-side square cylinders using the lattice Boltzmann method, Comput. Fluids, 35, 10, 1093-1107, (2006) · Zbl 1177.76307
[3] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472, (2010) · Zbl 1345.76087
[4] Belmonte, A.; Goldburg, W. I.; Kellay, H.; Rutgers, M. A.; Martin, B.; Wu, X. L., Velocity fluctuations in a turbulent soap film: the third moment in two dimensions, Phys. Fluids, 11, 5, 1196-1200, (1999) · Zbl 1147.76318
[5] Chang, K.; Constantinescu, G., Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders, J. Fluid Mech., 776, 161-199, (2015)
[6] Chatterjee, D.; Biswas, G.; Amiroudine, S., Numerical simulation of flow past row of square cylinders for various separation ratios, Comput. Fluids, 39, 1, 49-59, (2010) · Zbl 1242.76044
[7] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 1, 329-364, (1998)
[8] Greffier, O.; Amarouchene, Y.; Kellay, H., Thickness fluctuations in turbulent soap films, Phys. Rev. Lett., 88, 19, 194101, (2002)
[9] He, X.; Chen, S.; Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 1, 282-300, (1998) · Zbl 0919.76068
[10] Kellay, H.; Wu, X. L.; Goldburg, W. I., Vorticity measurements in turbulent soap films, Phys. Rev. lett., 80, 2, 277, (1998)
[11] Kumar, S. R.; Sharma, A.; Agrawal, A., Simulation of flow around a row of square cylinders, J. Fluid Mech., 606, 369-397, (2008) · Zbl 1146.76046
[12] Li, Y.; Shock, R.; Zhang, R.; Chen, H., Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method, J. Fluid Mech., 519, 273-300, (2004) · Zbl 1065.76166
[13] Nemati, H.; Sedighi, K.; Farhadi, M.; Pirouz, M. M.; Fattahi, E., Numerical simulation of fluid flow of two rotating side-by-side circular cylinders by lattice Boltzmann method, Int. J. Comput. Fluid Dyn., 24, 3-4, 83-94, (2010) · Zbl 1267.76092
[14] Qian, Y. H.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, EPL (Europhys. Lett.), 17, 6, 479-484, (1992) · Zbl 1116.76419
[15] Qian, Y. H., Simulating thermohydrodynamics with lattice BGK models, J. Sci. Comput., 8, 3, 231-242, (1993) · Zbl 0783.76004
[16] Rahmati, M. T., Application of a pressure correction method for modeling incompressible flow through turbomachines, Int. J. Comput. Methods, 6, 3, 399-411, (2009) · Zbl 1264.76068
[17] Shan, X., Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E, 55, 3, 2780-2788, (1997)
[18] Succi, S., The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, (2001), Oxford University Press, Oxford · Zbl 0990.76001
[19] Vorobieff, P.; Rivera, M.; Ecke, R. E., Soap film flows: statistics of two-dimensional turbulence, Phys. Fluids, 11, 8, 2167-2177, (1999) · Zbl 1147.76529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.