×

zbMATH — the first resource for mathematics

Determination of overhead power line cables configuration by FEM and meshless FDM. (English) Zbl 1404.74156

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K05 Strings
65L10 Numerical solution of boundary value problems involving ordinary differential equations
Software:
MFDMtool
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andreu, A.; Gil, L.; Roca, P., A new deformable catenary element for the analysis of cable net structures, Comput. Struct., 84, 1882-1890, (2006)
[2] Argyris, J. H.; Dunne, P. C.; Haase, M.; Orkisz, J., Higher order simplex elements for large strain analysis — natural approach, Comp. Meths. Appl. Mech. Eng., 3, 16, 68-96, (1978) · Zbl 0399.73074
[3] Atluri, S. N., The Meshless Method (MLPG) for Domain & BIE Discretizations, 677, (2004), Tech Science Press · Zbl 1105.65107
[4] Cecot, W., Milewski, S. and Orkisz, J. [2016] Dynamic power line grid rating aided by innovative measurement techniques (in Polish). Cracow University of Technology, Institute for Computational Civ. Eng. report B-199/2016, 281 pp.
[5] Chaudhary, M., Semiclosed-form solution for static nonlinear analysis of extensible cables, Mech. Solids, 14, 130-142, (2014)
[6] Demkowicz, L., Computing with hp-Adaptive Finite Elements. Vol. 1. One and Two Dimensional Elliptic and Maxwell Problems, (2006), Chapman & Hall/CRC
[7] Flaga, A.; Blazik-Borowa, E.; Podgorski, J., Aero dynamics of tall cable-bar structures (in Polish), (2004), Wydawnictwo Politechniki Lubelskiej
[8] Huang, Y.; Lan, W., Static analysis of cable structure, Appl. Math. Mech., 27, 1425-1430, (2006) · Zbl 1178.74109
[9] Jayaraman, H. B.; Knudson, W. C., A curved element for the analysis of cable structures, Comput. Struct., 14, 3, 325-333, (1981)
[10] Lacarbonara, W.; Pacitti, A., Nonlinear modeling of cables with flexural stiffness, Math. Probl. Eng., 2008, 1-21, (2008) · Zbl 1163.74030
[11] Milewski, S.; Orkisz, J., In search of optimal acceleration approach to iterative solution methods of simultaneous algebraic equations, Comput. Math. Appl., 68, 101-117, (2014) · Zbl 1369.65065
[12] Milewski, S., Meshless finite difference method with higher order approximation — applications in mechanics, Arch. Comput. Methods Eng., 19, 1-49, (2012) · Zbl 1354.74313
[13] Milewski, S., Selected computational aspects of the meshless finite difference method, Numer. Algorithms, 63, 1, 107-126, (2013) · Zbl 1267.65156
[14] Oleksy, M.; Cecot, W., Application of the fully automatic hp-adaptive FEM to elastic-plastic problems, Comput. Methods Mater. Sci., 15, 1, 204-212, (2015)
[15] Orkisz, J.; Kleiber, M., Finite Difference Method (Part III), (1998), Springer-Verlag
[16] Snamina, J., Mechanical Wave Phenomena in Overhead Power Lines (in Polish), 287, (2003), Cracow University of Technology Press
[17] Such, M.; Jimenez-Octavio, J. R.; Carnicero, A.; Lopez-Garcia, O., An approach based on the catenary equation to deal with static analysis of three dimensional cable structures, Eng. Struct., 31, 9, 2162-2170, (2009)
[18] Thai, H. T.; Kim, S. E., Nonlinear static and dynamic analysis of cable structures, Finite Elem. Anal. Des., 47, 3, 237-246, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.