×

Static analysis of functionally graded laminates according to power-law variation of elastic modulus under bidirectional bending. (English) Zbl 1404.74033


MSC:

74E30 Composite and mixture properties
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, T. A., A 3D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere, Compos. Struct., 60, 265-274, (2003)
[2] Bayat, M.; Sahari, B. B.; Saleem, M.; Aidy, A., Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory, Appl. Math. Model, 33, 4215-4230, (2009) · Zbl 1205.74012
[3] Castellazzi, G.; Gentilini, C.; Krysl, P., Static analysis of functionally graded plates using a nodal integrated finite element approach, Compos. Struct., 103, 197-200, (2013)
[4] Ferreira, A. J. M.; Batra, R. C., Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method, Compos. Struct., 69, 449-457, (2005)
[5] GhannadPour, S. A. M.; Alinia, M. M., Large deflection behaviour of functionally graded plates under pressure loads, Compos. Struct., 75, 67-71, (2006)
[6] Hamad, M. H.; Tarlochan, F., An axisymmetric bending analysis of functionally graded annular plate under transverse load via generalized differential quadrature method, Int. J. Res. Eng. Technol., 2, 7, 13-23, (2013)
[7] Hashemi, S.; Akhavan, H.; Omidi, M., Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Appl. Math. Model, 34, 1276-1291, (2010) · Zbl 1186.74049
[8] Jha, D. K.; Kant, T.; Singh, R. K., A critical review of recent research on functionally graded plates, Compos. Struct., 96, 833-849, (2013)
[9] Jomehzadeh, E.; Atashipour, S. R., An analytical approach for stress analysis of functionally graded annular sector plates, Mater. Des., 30, 3679-3685, (2009)
[10] Kant, T.; Gupta, A. V.; Pendhari, S. S.; Desai, Y. M., Elasticity solution for crossply composite and sandwich laminates, Compos. Struct., 83, 13-24, (2008)
[11] Kant, T.; Ramesh, C. K., Numerical integration of linear boundary value problems in solid mechanics by segmentation method, Int. J. Numer. Methods Eng., 17, 1233-1256, (1981) · Zbl 0461.73070
[12] Kantrovich, L. V.; Krylov, V. I., Approximate Methods of Higher Analysis, (1958), Noordhoff, Groningen
[13] Ma, L. S.; Wang, T. J., Relationship between axisymmetric bending and buckling solution of FGM circular plates based on third-order plate theory and classical plate theory, Int. J. Solid Struct., 41, 85-101, (2004) · Zbl 1076.74036
[14] Mantari, J. L.; Soares, C., A novel higher-order shear deformation theory with stretching effect for functionally graded plates, Compos. B Eng., 45, 268-281, (2012)
[15] Mantari, J. L.; Oktem, A. S.; Soares, C. G., Bending response of functionally graded plates by using a new higher order shear deformation theory, Compos. Struct., 94, 714-723, (2012)
[16] Mojdehi, A. R.; Darvizeh, A.; Basti, A.; Rajabi, H., Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov-Galerkin (MLPG) method, Eng. Anal. Bound. Elem., 35, 1168-1180, (2011) · Zbl 1259.74093
[17] Navazi, H. M.; Haddadpour, H.; Rasekh, M., An analytical solution for nonlinear cylindrical bending of functionally graded plates, Thin-Walled Struct., 44, 1129-1137, (2006)
[18] Neves, A. M. A.; Ferreira, A. J. M.; Carrera, E., A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. B Eng., 43, 711-725, (2012)
[19] Neves, A. M. A.; Ferreira, A. J. M.; Cinefra, M., Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Compos. B Eng., 44, 657-674, (2013)
[20] Nguyen, T. K.; Sab, K.; Bonnet, G., First-order shear deformation plate models for functionally graded materials, Compos. Struct., 83, 25-36, (2008)
[21] Pascon, J. P.; Coda, H. B., Analysis of elastic functionally graded materials under large displacements via high-order tetrahedral elements, Finite Elem. Anal. Des., 50, 33-47, (2013)
[22] Pendhari, S. S.; Kant, T.; Desai, Y. M.; Venkata, C., Static solutions for functionally graded simply supported plates, Int. J. Mech. Mater. Des., 8, 51-69, (2012)
[23] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Methods Eng., 47, 663-684, (2000) · Zbl 0970.74041
[24] Reddy, J. N.; Chin, C. D., Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses, 21, 593-626, (1998)
[25] Sankar, B. V., An elasticity solution for functionally graded beam, Compos. Sci. TechNOL., 61, 689-696, (2001)
[26] Sankar, B. V.; Tzeng, J. T., Thermal stresses in functionally graded beams, AIAA J., 410, 6, 1228-1232, (2002)
[27] Sheikholeslami, S. A.; Saidi, A. R., Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory, Compos. Struct., 106, 350-361, (2013)
[28] Simsek, M.; Kocaturk, T., Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load, Compos. Struct., 90, 465-473, (2009)
[29] Singha, M. K.; Prakash, T.; Ganapathi, M., Finite element analysis of functionally graded plates under transverse load, Finite Elem. Anal. Des., 47, 453-460, (2011)
[30] Taj, G.; Chakrabarti, A.; Sheikh, A., Analysis of functionally graded plates using higher order shear deformation theory, Appl. Math. Model., 37, 8484-8494, (2013)
[31] Tanigawa, Y., Some basic thermoelastic problems for non-homogeneous structural materials, Appl. Mech. Rev., 48, 6, 287-300, (1995)
[32] Thai, H.; Choi, D., Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory, Compos. Struct., 95, 142-153, (2013)
[33] Vel, S. S.; Batra, R. C., Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA J., 40, 7, 1421-1433, (2002)
[34] Vel, S. S.; Batra, R. C., Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 703-730, (2004)
[35] Wu, C. P.; Chiu, K. H.; Wang, Y. M., RMVT-based meshless collocation and element free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Compos. Struct., 93, 923-943, (2011)
[36] Zenkour, A. M., Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Model., 30, 67-84, (2006) · Zbl 1163.74529
[37] Zhang, Ch.; Cui, M.; Wang, J.; Gao, X. W., 3D crack analysis in functionally graded materials, Eng. Fract. Mech., 78, 585-604, (2011)
[38] Zhao, X.; Lee, Y. Y.; Liew, K. M., Free vibration analysis of functionally graded plates using the element-free KP-Ritz method, J. Sound Vib., 319, 918-939, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.