×

zbMATH — the first resource for mathematics

A smooth simultaneous confidence band for correlation curve. (English) Zbl 1404.62048
Summary: A plug-in estimator is proposed for a local measure of variance explained by regression, termed correlation curve in [K. Doksum et al., J. Am. Stat. Assoc. 89, No. 426, 571–582 (1994; Zbl 0803.62035)], consisting of a two-step spline-kernel estimator of the conditional variance function and local quadratic estimator of first derivative of the mean function. The estimator is oracally efficient in the sense that it is as efficient as an infeasible correlation estimator with the variance function known. As a consequence of the oracle efficiency, a smooth simultaneous confidence band (SCB) is constructed around the proposed correlation curve estimator and shown to be asymptotically correct. Simulated examples illustrate the versatility of the proposed oracle SCB which confirms the asymptotic theory. Application to a 1995 British Family Expenditure Survey data has found marginally significant evidence for a local version of Engel’s law, i.e., food budget share and household real income are inversely related [B. W. Hamilton, “Using Engel’s law to estimate CPI Bias”, Am. Econ. Rev. 91, No. 3, 619–630 (2001; doi:10.1257/aer.91.3.619)].

MSC:
62G15 Nonparametric tolerance and confidence regions
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62P20 Applications of statistics to economics
62G07 Density estimation
Software:
R
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aerts, M; Claeskens, G, Local polynomial estimators in multiparameter likelihood models, J Am Stat Assoc, 92, 1536-1545, (1997) · Zbl 0912.62045
[2] Bickel, PJ; Rosenblatt, M, On some global measures of deviations of density function estimates, Ann Stat, 31, 1852-1884, (1973) · Zbl 0275.62033
[3] Blundell, R; Chen, X; Kristensen, D, Semi-nonparametric IV estimation of shape invariant Engel curves, Econometrica, 75, 1613-1670, (2007) · Zbl 1133.91461
[4] Cao, G; Wang, L; Li, Y; Yang, L, Oracle-efficient confidence envelopes for covariance functions in dense functional data, Stat Sin, 26, 359-383, (2016) · Zbl 1419.62071
[5] Cao, G; Yang, L; Todem, D, Simultaneous inference for the mean function based on dense functional data, J Nonparametr Stat, 24, 359-377, (2012) · Zbl 1241.62119
[6] Cai, L; Yang, L, A smooth confidence band for variance function, TEST, 24, 632-655, (2015) · Zbl 1327.62194
[7] Carroll RJ, Ruppert D (1988) Transformations and weighting in regression. Champman and Hall, London · Zbl 0666.62062
[8] Claeskens, G; Keilegom, I, Bootstrap confidence bands for regression curves and their derivatives, Ann Stat, 31, 1852-1884, (2003) · Zbl 1042.62044
[9] Cleveland, WS, Robust locally weighted regression and smoothing scatterplots, J Am Stat Assoc, 74, 829-836, (1979) · Zbl 0423.62029
[10] de Boor C (2001) A practical guide to splines. Springer, New York · Zbl 0987.65015
[11] Doksum, K; Blyth, S; Bradlow, E; Meng, X; Zhao, H, Correlation curves as local measures of variance explained by regression, J Am Stat Assoc, 89, 571-582, (1994) · Zbl 0803.62035
[12] Eubank, RL; Speckman, PL, Confidence bands in nonparametric regression, J Am Stat Assoc, 88, 1287-1301, (1993) · Zbl 0792.62030
[13] Fan, J, Local linear regression smoothers and their minimax efficiency, Ann Stat, 21, 196-216, (1993) · Zbl 0773.62029
[14] Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Champman and Hall, London · Zbl 0873.62037
[15] Fan, J; Yao, Q, Efficient estimation of conditional variance functions in stochastic regression, Biometrika, 85, 645-660, (1998) · Zbl 0918.62065
[16] Gasser, T; Müller, HG; Mammitzsch, V, Estimating regression functions and their derivatives with kernel methods, Scand J stat, 11, 171-185, (1984) · Zbl 0548.62028
[17] Gu, L; Wang, L; Härdle, W; Yang, L, A simultaneous confidence corridor for varying coefficient regression with sparse functional data, TEST, 23, 806-843, (2014) · Zbl 1312.62051
[18] Gu, L; Yang, L, Oracally efficient estimation for single-index link function with simultaneous band, Electron J Stat, 9, 1540-1561, (2015) · Zbl 1327.62254
[19] Hall, P, Edgeworth expansions for nonparametric density estimators, with applications, Statistics, 22, 215-232, (1991) · Zbl 0809.62031
[20] Hall, P, Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density, Ann Stat, 20, 675-694, (1992) · Zbl 0748.62028
[21] Hall, P; Titterington, MD, On confidence bands in nonparametric density estimation and regression, J Multivar Anal, 27, 228-254, (1988) · Zbl 0664.62046
[22] Hamilton, BW, Using engel’s law to estimate CPI bias, Am Econ Rev, 91, 619-630, (2001)
[23] Härdle, W, Asymptotic maximal deviation of M-smoothers, J Multivar Anal, 29, 163-179, (1989) · Zbl 0667.62028
[24] Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York · Zbl 0518.60021
[25] Ma, S; Yang, L; Carroll, R, A simultaneous confidence band for sparse longitudinal regression, Stat Sin, 22, 95-122, (2012) · Zbl 1417.62088
[26] R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
[27] Ruppert, D; Wand, MP, Multivariate weighted least squares regression, Ann Stat, 22, 1346-1370, (1994) · Zbl 0821.62020
[28] Silverman WB (1986) Density estimation for statistics and data analysis. Chapman and Hall, London · Zbl 0617.62042
[29] Song, Q; Liu, R; Shao, Q; Yang, L, A simultaneous confidence band for dense longitudinal regression, Commun Stat Theory Methods, 43, 5195-5210, (2014) · Zbl 1307.62117
[30] Song, Q; Yang, L, Spline confidence bands for variance functions, J Nonparametr Stat, 5, 589-609, (2009) · Zbl 1165.62317
[31] Stapleton J (2009) Linear statistical models, 2nd edn. Wiley, Hoboken · Zbl 1179.62090
[32] Stone, CJ, Consistent nonparametric regression, Ann Stat, 5, 595-645, (1977) · Zbl 0366.62051
[33] Stone, CJ, Optimal rates of convergence for nonparametric estimators, Ann Stat, 8, 1348-1360, (1980) · Zbl 0451.62033
[34] Tusnády, G, A remark on the approximation of the sample DF in the multidimensional case, Period Math Hung, 8, 53-55, (1977) · Zbl 0386.60006
[35] Wang, J; Cheng, F; Yang, L, Smooth simultaneous confidence bands for cumulative distribution functions, J Nonparametr Stat, 25, 395-407, (2013) · Zbl 1297.62082
[36] Wang, J; Liu, R; Cheng, F; Yang, L, Oracally efficient estimation of autoregressive error distribution with simultaneous confidence band, Ann Stat, 42, 654-668, (2014) · Zbl 1308.62096
[37] Wang, J; Wang, S; Yang, L, Simultaneous confidence bands for the distribution function of a finite population and its superpopulation, TEST, 25, 692-709, (2016) · Zbl 1391.62077
[38] Wang, J; Yang, L, Polynomial spline confidence bands for regression curves, Stat Sin, 19, 325-342, (2009) · Zbl 1225.62055
[39] Wu, W; Zhao, Z, Inference of trends in time series, J R Stat Soc Ser B, 69, 391-410, (2007)
[40] Xia, Y, Bias-corrected confidence bands in nonparametric regression, J R Stat Soc Ser B, 60, 797-811, (1998) · Zbl 0909.62043
[41] Zhao, Z; Wu, W, Confidence bands in nonparametric time series regression, Ann Stat, 36, 1854-1878, (2008) · Zbl 1142.62346
[42] Zheng, S; Liu, R; Yang, L; Härdle, W, Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection, TEST, 25, 607-626, (2016) · Zbl 1422.62155
[43] Zheng, S; Yang, L; Härdle, W, A smooth simultaneous confidence corridor for the mean of sparse functional data, J Am Stat Assoc, 109, 661-673, (2014) · Zbl 1367.62151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.