×

Besov functions and tangent space to the integrable Teichmüller space. (English) Zbl 1404.30030

Summary: The authors identify the function space which is the tangent space to the integrable Teichmüller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations of this function space are obtained.

MSC:

30C62 Quasiconformal mappings in the complex plane
30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30H25 Besov spaces and \(Q_p\)-spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlfors, L. V., Remarks on Teichmüller’s space of Riemann surfaces, Ann. Math., 74, 171-191, (1961) · Zbl 0146.30602 · doi:10.2307/1970309
[2] Ahlfors, L. V., Lectures on Quasiconformal Mapping, D. Van Nostrand, Princeton, New York, 1966. · Zbl 0138.06002
[3] Ahlfors, L. V., Quasiconformal deformations and mappings in Rn, J. Anal. Math., 30, 74-97, (1976) · Zbl 0338.30017 · doi:10.1007/BF02786705
[4] Beurling, A.; Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math., 96, 125-142, (1956) · Zbl 0072.29602 · doi:10.1007/BF02392360
[5] Cui, G., Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A, 43, 267-279, (2000) · Zbl 0965.30018 · doi:10.1007/BF02897849
[6] Duren, L., Theory of \(H\)p Spaces, Academic Press, New York, London, 1970. · Zbl 0215.20203
[7] Gardiner, F. P. and Lakic, N., Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000.
[8] Gardiner, F. P.; Sullivan, D., Symmetric structure on a closed curve, Amer. J. Math., 114, 683-736, (1992) · Zbl 0778.30045 · doi:10.2307/2374795
[9] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. · Zbl 0469.30024
[10] Guo, H., Integrable Teichmüller spaces, Sci. China Ser. A, 43, 47-58, (2000) · Zbl 0948.30052 · doi:10.1007/BF02903847
[11] Hu, Y.; Song, J.; Wei, H.; Shen, Y., An integral operator induced by a Zygmund function, J. Math. Anal. Appl., 401, 560-567, (2013) · Zbl 1279.30005 · doi:10.1016/j.jmaa.2012.12.049
[12] Lehto, O., Univalent Functions and Teichmüller Spaces, John Wiley & Sons Inc., Springer-Verlag, New York, 1986. · Zbl 0606.30001
[13] Nag, S., The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, 1988. · Zbl 0667.30040
[14] Nag, S.; Verjovsky, A., Diff(\(S\)1) and the Teichmüller spaces, Comm. Math. Phys., 130, 123-138, (1990) · Zbl 0705.32013 · doi:10.1007/BF02099878
[15] Reich, E.; Chen, J., Extensions with bounded ϑ-derivative, Ann. Acad. Sci. Fenn., 16, 377-389, (1991) · Zbl 0757.30023
[16] Reimann, H., Ordinary differential equations and quasiconformal mappings, Invent. Math., 33, 247-270, (1976) · Zbl 0328.30019 · doi:10.1007/BF01404205
[17] Shamoyan, F. A., Toeplitz operators and division by an inner function in some spaces of analytic functions, Dokl. Akad. Nauk Armenii, 76, 215-219, (1983) · Zbl 0531.47028
[18] Shen, Y., Fourier coefficients of Zygmund functions and analytic functions with quasiconformal deformation extensions, Sci. China Math., 55, 607-624, (2012) · Zbl 1244.30002 · doi:10.1007/s11425-011-4236-3
[19] Shen, Y., Weil-Peterssen Teichmüller space, Amer. J. Math., arXiv: 1304.3197.
[20] Takhtajan, L.; Teo, L., Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 183, 119, (2006) · Zbl 1243.32010
[21] Tang, S., Some characterizations of the integrable Teichmüller space, Sci. China Math., 56, 541-551, (2013) · Zbl 1296.30033 · doi:10.1007/s11425-012-4472-1
[22] Tang, S. and Shen, Y., Integrable Teichmüller space, preprint.
[23] Triebel, H., Theory of Function Spaces, Monographs in Mathematics, 78, Birkhäuser, Basel, 1983. · Zbl 0546.46028
[24] Wei, H.; Shen, Y., On the tangent space to the BMO-Teichmüller space, J. Math. Anal. Appl., 419, 715-726, (2014) · Zbl 1294.30089 · doi:10.1016/j.jmaa.2014.05.012
[25] Yanagishita, M., Introduction of a complex structure on the \(p\)-integrable Teichmüller space, Ann. Acad. Sci. Fenn. Math., 39, 947-971, (2014) · Zbl 1301.30044 · doi:10.5186/aasfm.2014.3952
[26] Zhu, K., Operator Theory in Function Spaces, Math. Surveys Monogr., 138, American Mathematical Society, Providence, RI, 2007. · Zbl 1123.47001
[27] Zygmund, A., Smooth functions, Duke Math. J., 12, 47-76, (1945) · Zbl 0060.13806 · doi:10.1215/S0012-7094-45-01206-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.