Balakrishnan, Jennifer S.; Ionica, Sorina; Lauter, Kristin; Vincent, Christelle Constructing genus-3 hyperelliptic Jacobians with CM. (English) Zbl 1404.11085 LMS J. Comput. Math. 19A, Spec. Iss., 283-300 (2016). Summary: Given a sextic CM field \(K\), we give an explicit method for finding all genus-\(3\) hyperelliptic curves defined over \(\mathbb{C}\) whose Jacobians are simple and have complex multiplication by the maximal order of this field, via an approximation of their Rosenhain invariants. Building on the work of A. Weng [J. Ramanujan Math. Soc. 16, No. 4, 339–372 (2001; Zbl 1066.11028)], we give an algorithm which works in complete generality, for any CM sextic field \(K\), and computes minimal polynomials of the Rosenhain invariants for any period matrix of the Jacobian. This algorithm can be used to generate genus-3 hyperelliptic curves over a finite field \(\mathbb{F}_{p}\) with a given zeta function by finding roots of the Rosenhain minimal polynomials modulo \(p\). Cited in 5 Documents MSC: 11G15 Complex multiplication and moduli of abelian varieties 11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields 14H42 Theta functions and curves; Schottky problem 14Q05 Computational aspects of algebraic curves Software:genus3; SageMath PDF BibTeX XML Cite \textit{J. S. Balakrishnan} et al., LMS J. Comput. Math. 19A, 283--300 (2016; Zbl 1404.11085) Full Text: DOI arXiv References: [1] Shimura, Complex multiplication of abelian varieties and its applications to number theory (1961) · Zbl 0112.03502 [2] DOI: 10.1007/s00145-009-9038-1 · Zbl 1182.94047 · doi:10.1007/s00145-009-9038-1 [3] DOI: 10.1007/978-0-8176-4578-6 · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6 [4] DOI: 10.1007/BF01342938 · Zbl 0088.28903 · doi:10.1007/BF01342938 [5] DOI: 10.1007/978-0-8176-4578-6 · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6 [6] DOI: 10.1090/S0025-5718-06-01900-4 · Zbl 1179.94062 · doi:10.1090/S0025-5718-06-01900-4 [7] DOI: 10.1007/978-1-4612-5485-0 · doi:10.1007/978-1-4612-5485-0 [8] DOI: 10.1515/jmc-2014-0033 · Zbl 1370.94522 · doi:10.1515/jmc-2014-0033 [9] Diem, Algorithmic number theory: 7th international symposium, ANTS VII (2006) [10] DOI: 10.1090/S0025-5718-04-01656-4 · Zbl 1049.14014 · doi:10.1090/S0025-5718-04-01656-4 [11] DOI: 10.1007/978-3-642-65315-5 · doi:10.1007/978-3-642-65315-5 [12] DOI: 10.1112/S1461157014000370 · Zbl 1296.11067 · doi:10.1112/S1461157014000370 [13] DOI: 10.2307/2373243 · Zbl 0159.50401 · doi:10.2307/2373243 [14] Gross, On some geometric constructions related to theta characteristics pp 279– (2004) [15] DOI: 10.1007/978-3-662-02945-9 · doi:10.1007/978-3-662-02945-9 [16] DOI: 10.1007/978-3-662-06307-1 · doi:10.1007/978-3-662-06307-1 [17] Weng, J. Ramanujan Math. Soc. 16 pp 339– (2001) [18] DOI: 10.1080/10586458.1997.10504615 · Zbl 1115.14304 · doi:10.1080/10586458.1997.10504615 [19] DOI: 10.1090/S0025-5718-99-01020-0 · Zbl 0906.14025 · doi:10.1090/S0025-5718-99-01020-0 [20] DOI: 10.3792/pjaa.72.162 · Zbl 0924.14016 · doi:10.3792/pjaa.72.162 [21] DOI: 10.1215/S0012-7094-94-07634-5 · Zbl 0832.14020 · doi:10.1215/S0012-7094-94-07634-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.