×

zbMATH — the first resource for mathematics

A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis. (English) Zbl 1403.74322
Summary: Naturally stabilized nodal integration (NSNI) meshfree formulations associated with the higher-order shear deformation plate theory (HSDT) are proposed to analyze bending and free vibration behaviors of carbon nanotube-reinforced composite (CNTRC) plates. An extended rule of mixture is used to compute the effective material properties of CNTRC plates. The uniform and functionally graded distributions of carbon nanotube (CNTs) via the plate thickness are studied. In the present approach, gradient strains are directly computed at nodes similar to the direct nodal integration (DNI). Outstanding features of the current approach are to alleviate instability solutions in the DNI and to significantly decrease computational cost as compared to the traditional high-order Gauss quadrature scheme. Discrete equations for bending and free vibration analyses are obtained by variational consistency in the Galerkin weak form. Enforcing essential boundary conditions is completely similar to the finite element method (FEM) due to satisfying the Kronecker delta function property of moving Kriging integration shape functions. Numerical validations with various complex geometries, stiffness ratios, volume fraction of CNTs and boundary conditions are given to show the efficiency of the present approach.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74E30 Composite and mixture properties
74K20 Plates
82D80 Statistical mechanical studies of nanostructures and nanoparticles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Salvetat-Delmotte, J. P.; Rubio, A., Mechanical properties of carbon nanotubes: a fiber digest for beginners, Carbon, 40, 1729-1734, (2002)
[2] Kamarian, S.; Pourasghar, A.; Yas, M. H., Eshelby-Mori-Tanaka approach for vibrational behavior of functionally graded carbon nanotube-reinforced plate resting on elastic foundation, J Mech Sci Technol, 27, 3395-3401, (2013)
[3] Alibeigloo, A.; Liew, K. M., Thermoelastic analysis of functionally graded carbon nanotube reinforced composite plate using theory of elasticity, Compos Struct, 106, 873-881, (2013)
[4] Alibeigloo, A., Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity, Compos Struct, 95, 612-622, (2013)
[5] Alibeigloo, A., Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers, Compos Struct, 118, 482-495, (2014)
[6] Wang, M.; Li, Z. M.; Qiao, P., Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates, Compos Struct, 144, 33-43, (2016)
[7] Fazelzadeh, S. A.; Pouresmaeeli, S.; Ghavanloo, E., Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow, Comput Methods Appl Mech Eng, 285, 714-729, (2015) · Zbl 1423.76191
[8] Zhu, P.; Lei, Z. X.; Liew, K. M., Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Compos Struct, 94, 1450-1460, (2012)
[9] Lei, Z. X.; Liew, K. M.; Yu, J. L., Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free KP-Ritz method in thermal environment, Compos Struct, 106, 128-138, (2013)
[10] Mehrabadi, S. J.; Aragh, S. B.; Khoshkhahesh, V.; Taherpour, A., Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes, Compos Part B Eng, 43, 2031-2040, (2012)
[11] Lei Z.X., Liew K.M., Yu J.L. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 2013; 98:160-168. · Zbl 1352.74165
[12] Lei, Z. X.; Zhang, L. W.; Liew, K. M., Elasto-dynamic analysis of carbon nanotube-reinforced functionally graded plates, Int J Mech Sci, 99, 208-217, (2015)
[13] Rafiee, M.; He, X. Q.; Liew, K. M., Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection, Int J Non-Linear Mech, 59, 37-51, (2014)
[14] Lei, Z. X.; Liew, K. M.; Yu, J. L., Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free KP-Ritz method, Comput Methods Appl Mech Eng, 256, 189-199, (2013) · Zbl 1352.74165
[15] Zhang, L. W.; Liew, K. M., Post-buckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach, Compos Struct, 138, 40-51, (2016)
[16] Lei, Z. X.; Zhang, L. W.; Liew, K. M., Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the KP-Ritz method, Compos Struct, 127, 245-529, (2015)
[17] Lei, Z. X.; Zhang, L. W.; Liew, K. M., Analysis of laminated CNT reinforced functionally graded plates using the element-free KP-Ritz method, Compos Part B Eng, 84, 211-221, (2016)
[18] Bhardwaj, G.; Upadhyay, A. K.; Pandey, R.; Shukla, K. K., Non-linear flexural and dynamic response of CNT reinforced laminated composite plates, Compos Part B Eng, 45, 89-100, (2013)
[19] Rafiee, M.; Liu, X. F.; He, X. Q.; Kitipornchai, S., Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates, J Sound Vibr, 333, 3236-3251, (2014)
[20] Ambartsumian, S. A., On the theory of bending plates, Izv Otd Tech Nauk ANSSSR, 5, 269-277, (1958)
[21] Reddy, J. N., A simple higher-order theory for laminated composite plates, J Appl Mech, 51, 745-752, (1984) · Zbl 0549.73062
[22] Nguyen-Xuan, H.; Tran, L.. V; Thai, C. H.; Kulasegaram, S.; Bordas, S. P.A., Isogeometric analysis of functionally graded plates using a refined plate theory, Compos Part B, 64, 222-234, (2014)
[23] Nguyen, N. T.; Thai, H. C.; Nguyen-Xuan, H., On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach, Int J Mech Sci, 110, 242-255, (2016)
[24] Soldatos, K. P., A transverse shear deformation theory for homogenous monoclinic plates, Acta Mech, 94, 195-220, (1992) · Zbl 0850.73130
[25] Touratier, M., An efficient standard plate theory, Int J Eng Sci, 29, 745-752, (1991) · Zbl 0825.73299
[26] Thai, H. C.; Ferreira, A. J.M.; Rabczuk, T.; Bordas, S. P.A.; Nguyen-Xuan, H., Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur J Mech A/Solids, 43, 89-108, (2014) · Zbl 1406.74453
[27] Thai, H. C.; Kulasegaram, S.; Tran, V. L.; Nguyen-Xuan, H., Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach, Comput Struct, 141, 94-112, (2014)
[28] Karama, M.; Afaq, K. S.; Mistou, S., Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity, Int J Solids Struct, 40, 1525-1546, (2003) · Zbl 1087.74579
[29] Aydogdu, M., A new shear deformation theory for laminated composite plates, Compos Struct, 89, 94-101, (2009)
[30] Shen, H. S., Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments, Compos Struct, 91, 9-19, (2009)
[31] Shen, H. S.; Zhang, C. L., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Mater Des, 31, 3403-3411, (2010)
[32] Wang, Z. X.; Shen, H. S., Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Comput Mater Sci, 50, 2319-2330, (2011)
[33] Shooshtari, A.; Rafiee, M., Vibration characteristics of nanocomposite plates under thermal conditions including nonlinear effects, Int J Appl Res Mech Eng, 1, 60-69, (2011)
[34] Phung-Van, P.; Abdel-Wahab, M.; Liew, K. M.; Bordas, S. P.A.; Nguyen-Xuan, H., Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory, Compos Struct, 123, 137-149, (2015)
[35] Song, Z. G.; Zhang, L. W.; Liew, K. M., Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory, Int J Mech Sci, 105, 90-101, (2016)
[36] Selim, B. A.; Zhang, L. W.; Liew, K. M., Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory, Compos Struct, 156, 276-290, (2016)
[37] Wang, Z. X.; Shen, H. S., Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets, Compos Part B Eng, 43, 411-421, (2012)
[38] Shen, H. S.; Zhu, Z. H., Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, Eur J Mech A/Solids, 35, 10-21, (2012) · Zbl 1349.74146
[39] Natarajan, S.; Haboussi, M.; Manickam, G., Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face-sheets, Compos Struct, 113, 197-207, (2014)
[40] Sankar, A.; Natarajan, S.; Haboussi, M.; Ramajeyathilagam, K.; Ganapathi, M., Panel flutter characteristics of sandwich plates with CNT reinforced face-sheets using an accurate higher-order theory, J Fluids Struct, 50, 376-391, (2014)
[41] Zhang, L. W.; Song, Z. G.; Liew, K. M., State-space levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory, Compos Struct, 134, 989-1003, (2015)
[42] Ardestani, M. M.; Zhang, L. W.; Liew, K. M., Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates, Comput Methods Appl Mech Eng, 317, 341-379, (2017)
[43] Ballestra, L. V.; Pacelli, G., A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications, Eng Anal Bound Elem, 36, 1546-1554, (2012) · Zbl 1352.65385
[44] Ballestra, L. V.; Pacelli, G., Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions, Eng Anal Bound Elem, 35, 1075-1084, (2011) · Zbl 1259.65157
[45] Huang, C. S.; Yen, C. F.; Cheng, A. H.D., Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Eng Anal Bound Elem, 31, 614-623, (2007) · Zbl 1195.65176
[46] Cheng, A. H.D.; Golberg, M. A.; Kansa, E. J.; Zammito, G., Exponential convergence and H-C multiquadric collocation method for partial differential equations, Numer Methods Part Differ Equ, 19, 571-594, (2003) · Zbl 1031.65121
[47] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081
[48] Puso, M.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Int J Numer Methods Eng, 74, 416-446, (2008) · Zbl 1159.74456
[49] Hillman, M.; Chen, J. S.; Chi, S. W., Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems, Comput Part Mech, 1, 245-256, (2014)
[50] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Methods Appl Mech Eng, 139, 49-74, (1996) · Zbl 0918.73329
[51] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses, Int J Numer Methods Eng, 46, 341-385, (1999) · Zbl 0965.74079
[52] Liu, G. R.; Zhang, G. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A nodal integration technique for meshfree radial point interpolation method (NI-RPIM), Int J Solids Struct, 44, 3840-3890, (2007) · Zbl 1135.74050
[53] Wu, C. T.; Koishi, M.; Hu, W., A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method, Comput Mech, 56, 19-37, (2015) · Zbl 1329.74292
[54] Hillman, M.; Chen, J. S., An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics, Int J Numer Methods Eng, 107, 603-630, (2016) · Zbl 1352.74119
[55] Esawi, A. M.K.; Farag, M. M., Carbon nanotube reinforced composites: potential and current challenges, Mater Des, 28, 394-401, (2007)
[56] Shen, S. H., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos Struct, 91, 9-19, (2009)
[57] Shi, D. L.; Feng, X. Q.; Huang, Y. Y.; Hwang, K. C.; Gao, H., The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J Eng Mater Technol, 126, 250-257, (2004)
[58] Zhang, C. L.; Shen, S. H., Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation, Appl Phys Lett, 89, (2006)
[59] Thai, H. C.; Do, N. V.V.; Nguyen-Xuan, H., An improved moving Kriging meshfree method for analysis of isotropic and sandwich functionally graded material plates using higher-order shear deformation theory, Eng Anal Bound Elem, 64, 122-136, (2016) · Zbl 1403.74034
[60] Thai, H. C.; Nguyen, N. T.; Rabczuk, T.; Nguyen-Xuan, H., An improved moving Kriging meshfree method for plate analysis using a refined plate theory, Comput Struct, 176, 34-49, (2016)
[61] Liu, G. R., Meshfree methods: moving beyond the finite element method, (2003), CRC Press U.S.A
[62] Liu, W. K.; Ong, J. S.; Uras, R. A., Finite element stabilization matrices - a unification approach, Comput Methods Appl Mech Eng, 53, 13-46, (1985) · Zbl 0553.73065
[63] Koko, J., A Matlab mesh generator for the two-dimensional finite element method, Appl Math Comput, 250, 650-664, (2015) · Zbl 1328.65245
[64] Wu, C. P.; Li, H. Y., Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions, J Vibr Control, 22, 1-19, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.