×

zbMATH — the first resource for mathematics

Meshless method based on Shepard function and partition of unity for two-dimensional crack problems. (English) Zbl 1403.74082
Summary: A new Meshless method based on Shepard function and Partition of Unity (MSPU) is proposed for calculating crack SIFs (Stress Intensity Factors) and simulating crack propagation. Link elements are employed to connect the adjacent block elements inside and around the circle of a crack tip, and to solve the challenging problem of imposing essential boundary conditions for meshless methods. The proposed MSPU possesses the merits of concise interpolation formulation and simple numerical implementation, and shows many advantages over existing meshless methods. In this work, the virtual crack closure technique (VCCT) is used to capture the crack tip SIFs, and the crack propagation is determined based on the maximum circumferential stress criterion. Numerical examples of representative cracking problems indicate that the MSPU is of high accuracy, good stability and sufficient convergence rate in fracture analyses, and has a wide application prospective.

MSC:
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
OctPUM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075
[2] Rabczuk, T.; Zi, G.; Bordas, S.; Hung, N. X., A simple and robust three-dimensional cracking-particle method without enrichment, Comput Methods Appl Mech Eng, 199, 2437-2455, (2010) · Zbl 1231.74493
[3] Azevedo, J. M.C.; Belinha, J.; Dinis, L. M.J. S.; Jorge, R. M., Crack path prediction using the natural neighbour radial point interpolation method, Eng Anal Bound Elemen, 59, 144-158, (2015) · Zbl 1403.74291
[4] Zheng, H.; Liu, F.; Du, X. L., Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method, Comput Methods Appl Mech Eng, 295, 150-171, (2015) · Zbl 1423.74853
[5] Fontes, E. F.; Santiago, J. A.F.; Telles, J. C.F., An iterative coupling between meshless methods to solve embedded crack problems, Eng Anal Bound Elemen, 55, 52-57, (2015) · Zbl 1403.74103
[6] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[7] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Int J Numer Methods Eng, 56, 1-11, (2003) · Zbl 1062.74652
[8] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[9] Liu, W. K.; Han, W.; Lu, H., Reproducing kernel element method. part I: theoretical formulation, Comput Methods Appl Mech Eng, 19, 933-951, (2004) · Zbl 1060.74670
[10] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 937-951, (2001) · Zbl 1050.74057
[11] Liu, G. R.; Gu, Y. T.; Dai, K. Y., Assessment and applications of point interpolation methods for computational mechanics, Int J Numer Methods Eng, 59, 1373-1397, (2004) · Zbl 1041.74562
[12] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 1623-1648, (2002) · Zbl 1098.74741
[13] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Int J Numer Methods Eng, 43, 839-887, (1998) · Zbl 0940.74078
[14] Sukumar, N.; Moran, B.; Yu Semenov, A., Natural neighbour Galerkin methods, Int J Numer Methods Eng, 50, 1-27, (2001) · Zbl 1082.74554
[15] Wendland, H., Meshless Galerkin methods using radial basis functions, Mathem Comput Am Math Soc, 68, 1521-1531, (1999) · Zbl 1020.65084
[16] Cai, Y. C.; Zhu, H. H., A local meshless Shepard and least square interpolation method based on local weak form, Comput Model Eng Sci, 34, 179-204, (2008) · Zbl 1232.65169
[17] Cai, Y. C.; Zhu, H. H., A PU-based meshless Shepard interpolation method satisfying delta property, Eng Anal Bound Elemen, 34, 9-16, (2010) · Zbl 1244.74211
[18] Krongauz, Y.; Belytschko, T., Consistent pseudo-derivatives in meshless methods, Comput Methods Appl Mech Eng, 146, 371-386, (1997) · Zbl 0894.73156
[19] Macri, M.; De, S., An octree partition of unity method (octpum) with enrichments for multiscale modeling of heterogeneous media, Comput Struct, 86, 780-795, (2008)
[20] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic pdes, SIAM J Sci Comput, 22, 853-890, (2000) · Zbl 0974.65090
[21] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method–part II: efficient cover construction and reliable integration, SIAM J Sci Comput, 23, 1655-1682, (2002) · Zbl 1011.65069
[22] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method–part III: a multilevel solver, SIAM J Sci Comput, 24, 377-409, (2002) · Zbl 1027.65168
[23] Oh, H. S.; Kim, J. G.; Hong, W. T., The piecewise polynomial partition of unity functions for the generalized finite element methods, Comput Methods Appl Mech Eng, 197, 3702-3711, (2008) · Zbl 1197.65185
[24] Riker, C.; Holzer, S. M., The mixed-cell-complex partition-of-unity method, Comput Methods Appl Mech Eng, 198, 1235-1248, (2009) · Zbl 1157.65492
[25] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 141-158, (1981) · Zbl 0469.41005
[26] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289-314, (1996) · Zbl 0881.65099
[27] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput Methods Appl Mech Eng, 193, 1257-1275, (2004) · Zbl 1060.74665
[28] Cho, J. Y.; Song, Y. M.; Choi, Y. H., The crack extension induced by penalty enforcement of essential boundary conditions in mesh-free methods, Comput Methods Appl Mech Eng, 197, 1167-1183, (2008) · Zbl 1159.65361
[29] Cai, Y. C.; Zhu, H. H.; Zhuang, X. Y., A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. frontiers of structural and civil engineering, 7, 369-378, (2013)
[30] Irwin G.R. One set of fast crack propagation in high strength steel and aluminum alloys. Sagamore Resrach Conference Proceedings, 1956, 2, pp. 289-305.
[31] Zheng, H.; Xu, D. D., New strategies for some issues of numerical manifold method in simulation of crack propagation, Int J Numer Methods Eng, 97, 986-1010, (2014) · Zbl 1352.74311
[32] Khosravifard, A.; Hematiyan, M. R., A new method for meshless integration in 2D and 3D Galerkin meshfree methods, Eng Anal Bound Elemen, 34, 30-40, (2010) · Zbl 1244.74222
[33] Erdogan, F.; Sih, G. C., On the crack extension in plates under plane loading and transverse shear, J Fluids Eng, 85, 519-525, (1963)
[34] Anderson, T. L., Fracture mechanics: fundamentals and applications, (2005), CRC Press · Zbl 1083.74001
[35] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin method, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[36] Srawley, J. E., Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens, Int J Fract, 12, 475-476, (1976)
[37] Chen, Y. Z.; Hasebe, N., New integration scheme for the branch crack problem, Eng Fract Mech, 52, 791-801, (1995)
[38] Gdoutos, E. E., Fracture mechanics: an introduction, (2006), Springer Science & Business Media · Zbl 0834.73056
[39] E.R.L. Budyn Multiple crack growth by the extended finite element method 2004.
[40] Bittencourt, T. N.; Wawrzynek, P. A.; Ingraffea, A. R., Quasi-automatic simulation of crack propagation for 2D LEFM problems, Eng Fract Mech, 55, 321-334, (1996)
[41] Ingraffea, A. R.; Grigoriu, M., Probabilistic fracture mechanics: A validation of predictive capability, (1990), Cornell University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.