zbMATH — the first resource for mathematics

Acceleration of isogeometric boundary element analysis through a black-box fast multipole method. (English) Zbl 1403.65228
Summary: This work outlines the use of a black-box fast multipole method to accelerate the far-field computations in an isogeometric boundary element method. The present approach makes use of T-splines to discretise both the geometry and analysis fields allowing a direct integration of CAD and analysis technologies. A black-box fast multipole method of \(O(N)\) complexity is adopted that minimises refactoring of existing boundary element codes and facilitates the use of different kernels. This paper outlines an algorithm for implementing the open-source black-box fast multipole method BBFMM3D within an existing isogeometric boundary element solver, but the approach is general in nature and can be applied to any boundary element surface discretisation. The \(O(N)\) behaviour of the approach is validated and compared against a standard direct solver. Finally, the ability to model large models of arbitrary geometric complexity directly from CAD models is demonstrated for potential problems.

65N38 Boundary element methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
Full Text: DOI
[1] Auricchio, F.; Beirao da Veiga, L.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully “locking-free” isogeometric approach for plane linear elasticity problemsa stream function formulation, Comput Methods Appl Mech Eng, 197, 1, 160-172, (2007) · Zbl 1169.74643
[2] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S., Isogeometric analysis using T-splines, Comput Methods Appl Mech Eng, 199, 5-8, 229-263, (2010) · Zbl 1227.74123
[3] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interactiontheory, algorithms, and computations, Comput Mech, 43, 1, 3-37, (2008) · Zbl 1169.74015
[4] Beatson R, Greengard L. A short course on fast multipole methods. In: Wavelets, multilevel methods and elliptic PDEs, vol. 1, 1997. p. 1-37. · Zbl 0882.65106
[5] Bebendorf, M., Approximation of boundary element matrices, Numer Math, 86, 4, 565-589, (2000) · Zbl 0966.65094
[6] Beer, G.; Marussig, B.; Duenser, C., Isogeometric boundary element method for the simulation of underground excavations, Géotech Lett, 3, 108-111, (2013)
[7] Belibassakis, K. A.; Gerosthathis, T. P.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Ginnis, A. I., A BEM-ISOGEOMETRIC method for the ship wave-resistance problem, J Ocean Eng, 60, 53-67, (2013)
[8] Bremer, J.; Gillman, A.; Martinsson, PG., A high-order accurate accelerated direct solver for acoustic scattering from surfaces, BIT Numer Math, 55, 2, 367-397, (2015) · Zbl 1317.65243
[9] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput Methods Appl Mech Eng, 199, 23-24, 1437-1445, (2010) · Zbl 1231.65027
[10] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagneticsb-splines approximation, Comput Methods Appl Mech Eng, 199, 17-20, 1143-1152, (2010) · Zbl 1227.78026
[11] Carrier, J.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm for particle simulations, SIAM J Sci Stat Comput, 9, 4, 669-686, (1988) · Zbl 0656.65004
[12] Cheng, H.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm in three dimensions, J Comput Phys, 155, 468-498, (1999) · Zbl 0937.65126
[13] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfacesa new paradigm for thin-shell finite-element analysis, Int J Numer Methods Eng, 47, 12, 2039-2072, (2000) · Zbl 0983.74063
[14] Cirak, F.; Scott, M. J.; Antonsson, E. K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput Aided Des, 34, 2, 137-148, (2002)
[15] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput Methods Appl Mech Eng, 195, 41, 5257-5296, (2006) · Zbl 1119.74024
[16] Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J Numer Anal, 19, 6, 1260-1262, (1982) · Zbl 0493.65011
[17] Evans, J. A.; Hughes, T. J.R., Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math Models Methods Appl Sci, 23, 08, 1421-1478, (2013) · Zbl 1383.76337
[18] Fong, W.; Darve, E., The black-box fast multipole method, J Comput Phys, 228, 23, 8712-8725, (2009) · Zbl 1177.65009
[19] Ginnis, A. I.; Kostas, K.; Politis, C. G.; Kaklis, P. D.; Belibassakis, K. A.; Gerostathis, T. P., Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput Methods Appl Mech Eng, 279, 425-439, (2014) · Zbl 1423.74270
[20] Greengard, L.; Gueyffier, D.; Martinsson, P. G.; Rokhlin, V., Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer, 18, 243-275, (2009) · Zbl 1176.65141
[21] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J Comput Phys, 73, 325-348, (1987) · Zbl 0629.65005
[22] Hackbusch, W., A sparse matrix arithmetic based on H-matrices. part iintroduction to H-matrices, Computing, 62, 2, 89-108, (1999) · Zbl 0927.65063
[23] Hackbusch, W.; Khoromskij, B. N., A sparse H-matrix arithmetic, Computing, 64, 1, 21-47, (2000) · Zbl 0962.65029
[24] Hackbusch, W.; Nowak, Z. P., On the fast matrix multiplication in the boundary element method by panel clustering, Numer Math, 54, 463-491, (1989) · Zbl 0641.65038
[25] Harbrecht, H.; Peters, M., Comparison of fast boundary element methods on parametric surfaces, Comput Methods Appl Mech Eng, 261, 39-55, (2013) · Zbl 1286.65175
[26] Heltai, L.; Arroyo, M.; DeSimone, A., Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput Methods Appl Mech Eng, 268, 514-539, (2014) · Zbl 1295.76022
[27] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G., An overview of the trilinos project, ACM Trans Math Softw, 31, 3, 397-423, (2005) · Zbl 1136.65354
[28] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysiscad, finite elements, NURBS, exact geometry, and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419
[29] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput Methods Appl Mech Eng, 269, 471-514, (2014) · Zbl 1296.65021
[30] Kurz, S.; Rain, O.; Rjasanow, S., The adaptive cross-approximation technique for the 3-D boundary-element method, IEEE Trans Magn, 38, 2, 421-424, (2002)
[31] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput Aided Des, 43, 11, 1427-1437, (2011)
[32] Li, X.; Scott, M. A.; Sederberg, T. W., Analysis-suitable T-splinescharacterization, refineability, and approximation, Math Models Methods Appl Sci, 24, 6, 1141-1164, (2014) · Zbl 1292.41004
[33] Martinsson, P. G.; Rokhlin, V., An accelerated kernel-independent fast multipole method in one dimension, SIAM J Sci Comput, 29, 3, 1160-1178, (2007) · Zbl 1154.65318
[34] Marussig B, Zechner J, Beer G, Fries TP. Fast isogeometric boundary element method based on independent field approximation. 2014. arXiv preprint arXiv:1406.0306. · Zbl 1423.74101
[35] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y., Rotation free isogeometric thin shell analysis using PHT-splines, Comput Methods Appl Mech Eng, 200, 47, 3410-3424, (2011) · Zbl 1230.74230
[36] Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl Mech Rev, 55, 4, 299-324, (2002)
[37] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (xibem) for two-dimensional Helmholtz problems, Comput Methods Appl Mech Eng, 259, 93-102, (2013) · Zbl 1286.65176
[38] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput Methods Appl Mech Eng, 284, 762-780, (2015) · Zbl 1425.65202
[39] Piegl, L.; Tiller, W., The NURBS book, (1997), Springer-Verlag New York · Zbl 0868.68106
[40] Saad, Y.; Schultz, M. H., Gmresa generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 3, 856-869, (1986) · Zbl 0599.65018
[41] Sauter, S. A.; Schwab, C., Boundary element methods, (2011), Springer Hiedelberg · Zbl 1215.65183
[42] Schillinger, D.; Dedé, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods and T-spline CAD surfaces, Comput Methods Appl Mech Eng, 249-252, 116-150, (2012) · Zbl 1348.65055
[43] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Int J Numer Methods Eng, 88, 126-156, (2011) · Zbl 1242.65243
[44] Scott MA, Hughes TJR, Sederberg TW, Sederberg MT. An integrated approach to engineering design and analysis using the autodesk T-spline plugin for Rhino3d. Adv Eng Softw 2016, in preparation.
[45] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R., Isogeometric boundary element analysis using unstructured T-splines, Comput Methods Appl Mech Eng, 254, 197-221, (2013) · Zbl 1297.74156
[46] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput Methods Appl Mech Eng, 209-212, 87-100, (2012) · Zbl 1243.74193
[47] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput Methods Appl Mech Eng, 269, 265-290, (2014) · Zbl 1296.65175
[48] Takahashi, T.; Matsumoto, T., An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng Anal Bound Elem, 36, 12, 1766-1775, (2012) · Zbl 1351.74138
[49] Vázquez, R.; Buffa, A., Isogeometric analysis for electromagnetic problems, IEEE Trans Magn, 46, 8, 3305-3308, (2010)
[50] Wang, P.; Xu, J.; Deng, J.; Chen, F., Adaptive isogeometric analysis using rational PHT-splines, Comput-Aided Des, 43, 11, 1438-1448, (2011)
[51] Wang, Y.; Benson, D. J.; Nagy, A. P., A multi-patch nonsingular isogeometric boundary element method using trimmed elements, Comput Mech, 1-19, (2015)
[52] Wei, X.; Zhang, Y.; Hughes, T. J.R.; Scott, M. A., Truncated hierarchical catmull-Clark subdivision with local refinement, Comput Methods Appl Mech Eng, 291, 1-20, (2015) · Zbl 1425.65028
[53] Ying, L.; Biros, G.; Zorin, D., A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J Comput Phys, 196, 2, 591-626, (2004) · Zbl 1053.65095
[54] Yoon, B.; Lenhoff, A., A boundary element method for molecular electrostatics with electrolyte effects, J Comput Chem, 11, 9, 1080-1086, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.