×

zbMATH — the first resource for mathematics

A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. (English) Zbl 1403.65069
Summary: A stable nodal integration method with strain gradient (SNIM-SG) for curing the temporal instability of node-based smoothed finite element method (NS-FEM) is proposed for dynamic problems using linear triangular and tetrahedron element. In each smoothing domain, except for considering the smoothed strain into the calculation of potential energy functional as NS-FEM, a term related to strain gradient is taken into account as a stabilization term. The proposed SNIM-SG can achieve appropriate system stiffness in strain energy between FEM and NS-FEM solutions and obtains quite favorable results in elastic and dynamic analysis. The accuracy and stability of SNIM-SG solution are studied through detailed analyzes of benchmark cases and practical engineering problems. In elastic-static analysis, it is found that SNIM-SG can provide higher accuracy in displacement field than the reference approaches do. In free vibration analysis, the spurious non-zero energy modes can be eliminated effectively owing to the fact that SNIM-SG solution strengths the original relatively soft NS-FEM, and SNIM-SG is confirmed to obtain fairly accurate natural frequency values in various examples. All in all, SNIM-SG cures the flaws of NS-FEM and enhances the dominant of nodal integration. Thus, the efficacy of the presented formulation in solving solid mechanics problems is well represented and clarified.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763-813, (2008) · Zbl 1152.74055
[2] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[3] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[4] Liu, W. K.; Hao, W.; Chen, Y.; Jun, S.; Gosz, J., Multiresolution reproducing kernel particle methods, Comput Mech, 20, 295-309, (1997) · Zbl 0893.73078
[5] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[6] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput Methods Appl Mech Eng, 139, 375-408, (1996) · Zbl 0896.73075
[7] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[8] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081
[9] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int J Comput Methods, 2, 199-236, (2008) · Zbl 1222.74044
[10] Yoo, J. W.; Moran, B.; Chen, J. S., Stabilized conforming nodal integration in the natural-element method, Int J Numer Methods Eng, 60, 861-890, (2004) · Zbl 1060.74677
[11] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput Struct, 87, 14-26, (2009)
[12] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput Methods Appl Mech Eng, 199, 3005-3027, (2010) · Zbl 1231.74432
[13] Liu, G. R.; Zhang, G. Y.; Dai, K. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int J Comput Methods, 2, 645-665, (2005) · Zbl 1137.74303
[14] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput Mech, 39, 859-877, (2007) · Zbl 1169.74047
[15] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Smooth finite element methods: convergence, accuracy and properties, Int J Numer Methods Eng, 74, 175-208, (2008) · Zbl 1159.74435
[16] Chen, J. S.; Hu, W.; Puso, M.; Wu, Y.; Zhang, X., Strain smoothing for stabilization and regularization of Galerkin meshfree methods, (Griebel, M.; Schweitzer, M. A., Meshfree methods for partial differential equations III, (2007), Springer Berlin Heidelberg), 57-75 · Zbl 1114.65131
[17] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Addressing volumetric locking and instabilities by selective integration in smoothed finite elements, Commun Numer Methods Eng, 25, 19-34, (2009) · Zbl 1169.74044
[18] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J. F., A smoothed finite element method for plate analysis, Comput Methods Appl Mech Eng, 197, 1184-1203, (2008) · Zbl 1159.74434
[19] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput Methods Appl Mech Eng, 198, 165-177, (2008) · Zbl 1194.74453
[20] Bordas, S.; Natarajan, S., On the approximation in the smoothed finite element method (SFEM), Int J Numer Methods Eng, 81, 660-670, (2010) · Zbl 1183.74261
[21] Wu, C. T.; Hu, W., Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Comput Methods Appl Mech Eng, 200, 2991-3010, (2011) · Zbl 1230.74201
[22] Nguyen-Xuan, H.; Nguyen, H. V.; Bordas, S.; Rabczuk, T.; Duflot, M., A cell-based smoothed finite element method for three dimensional solid structures, KSCE J Civ Eng, 16, 1230-1242, (2012)
[23] Lee CK, Mihai LA, Kerfriden P, Bordas S. The edge-based strain smoothing method for compressible and nearly incompressible non-linear elasticity for solid mechanics [Internet] 2014. Available from: 〈http://orbilu.uni.lu/handle/10993/14933〉
[24] Lee CK, Mihai LA, Kerfriden P, Bordas S. Strain smoothing technique in 3D for nearly incompressible neo-Hookean material [Internet] 2014. Available from: 〈http://orbilu.uni.lu/handle/10993/14933〉
[25] Lee CK, Mihai LA, Motlagh YG, Bordas SPA. The node-based smoothed finite element method in nonlinear elasticity [Internet] 2013. Available from: 〈http://orbilu.uni.lu/handle/10993/13848〉
[26] Nguyen-Thoi, T.; Rabczuk, T.; Lam-Phat, T.; Ho-Huu, V.; Phung-Van, P., Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3), Theor Appl Fract Mech, 72, 150-163, (2014)
[27] Nguyen-Thoi, T.; Phung-Van, P.; Rabczuk, T.; Nguyen-Xuan, H.; Le-Van, C., Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (ncs-FEM), Int J Comput Methods, 10, 43-51, (2013) · Zbl 1359.74433
[28] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, SPA, An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes, J Comput Appl Math, 233, 2112-2135, (2010) · Zbl 1423.74910
[29] Nguyen-Xuan, H.; Liu, G. R.; Bordas, S.; Natarajan, S.; Rabczuk, T., An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order, Comput Methods Appl Mech Eng, 253, 252-273, (2013) · Zbl 1297.74126
[30] Vu-Bac, N.; Nguyen-Xuan, H.; Chen, L.; Lee, C. K.; Zi, G.; Zhuang, X., A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics, J Appl Math, 2013, 343-374, (2013) · Zbl 1271.74418
[31] Chen, L.; Rabczuk, T.; Bordas, S.; Liu, G. R.; Zeng, K. Y.; Kerfriden, P., Extended finite element method with edge-based strain smoothing (esm-XFEM) for linear elastic crack growth, Comput Methods Appl Mech Eng, 209-212, 250-265, (2012) · Zbl 1243.74170
[32] Bordas, S. P.A.; Rabczuk, T.; Nguyen-Xuan, H.; Nguyen, V. P.; Natarajan, S.; Bog, T., Strain smoothing in FEM and XFEM, Comput Struct, 88, 1419-1443, (2010)
[33] Nguyen-Vinh, H.; Bakar, I.; Msekh, M. A.; Song, J. H.; Muthu, J.; Zi, G., Extended finite element method for dynamic fracture of piezoelectric materials, Eng Fract Mech, 92, 19-31, (2012)
[34] Natarajan, S.; Ferreira, A. J.M.; Bordas, S. P.A.; Carrera, E.; Cinefra, M., Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements, Compos Struct, 105, 75-81, (2013)
[35] Rodrigues, J. D.; Natarajan, S.; Ferreira, A. J.M.; Carrera, E.; Cinefra, M.; Bordas, S. P.A., Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques, Compos Struct, 135, 83-87, (2014)
[36] Natarajan, S.; Baiz, P. M.; Bordas, S.; Rabczuk, T.; Kerfriden, P., Natural frequencies of cracked functionally graded material plates by the extended finite element method, Compos Struct, 93, 3082-3092, (2011)
[37] Natarajan, S.; Ferreira, A.; Bordas, S.; Carrera, E.; Cinefra, M.; Zenkour, A. M., Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method, Math Probl Eng, 140, 1-24, (2013)
[38] Liu, G. R.A., G space theory and a weakened weak (W^2) form for a unified formulation of compatible and incompatible methods: part I theory, Int J Numer Methods Eng, 81, 1093-1126, (2010) · Zbl 1183.74358
[39] Zhang, Z. Q.; Liu, G. R., Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems, Comput Mech, 46, 229-246, (2010) · Zbl 1398.74431
[40] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J Sound Vib, 320, 1100-1130, (2009)
[41] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Methods Appl Mech Eng, 139, 49-74, (1996) · Zbl 0918.73329
[42] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput Methods Appl Mech Eng, 197, 3883-3897, (2008) · Zbl 1194.74433
[43] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S., A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput Mech, 46, 679-701, (2010) · Zbl 1260.74029
[44] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Int J Numer Methods Eng, 74, 416-446, (2008) · Zbl 1159.74456
[45] Oñate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L.; Sacco, S., A stabilized finite point method for analysis of fluid mechanics problems, Comput Methods Appl Mech Eng, 139, 315-346, (1996) · Zbl 0894.76065
[46] Oñate, E.; Taylor, R. L.; Zienkiewicz, O. C.; Rojek, J., A residual correction method based on finite calculus, Eng Comput, 20, 629-658, (2003) · Zbl 1043.74045
[47] Oñate, E.; Rojek, J.; Taylor, R. L.; Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedral, Int J Numer Methods Eng, 59, 1473-1500, (2004) · Zbl 1041.74546
[48] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput Methods Appl Mech Eng, 193, 1035-1063, (2004) · Zbl 1060.74672
[49] Zienkiewicz, O. C.; Taylor, R. L., The finite element method, (2000), Butterworth Heinemann Oxford, U.K · Zbl 0991.74002
[50] Timoshenko, S. P.; Goodier, J. N., Theory of elasticity, (1970), McGraw-Hill New York · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.