×

zbMATH — the first resource for mathematics

On approximate analytical solutions of differential equations in enzyme kinetics using homotopy perturbation method. (English) Zbl 1402.92225
Summary: Homotopy perturbation method is used to extend the approximate analytical solutions of nonlinear reaction equations describing enzyme kinetics for combinations of parameters for which solutions obtained in previous works are not valid. Also, by constructing a new homotopy, alternative approximate analytical expressions for substrate, substrate-enzyme complex and product concentrations are found. These first-order approximate solutions give more accurate results than the second-order approximations derived in previous works.

MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Michaelis, M.I. Menten, Biochem. Z. 49, 333 (1913)
[2] G.E. Briggs, J.B.S. Haldane, Biochem. J. 19, 338 (1925)
[3] K.J. Laidler, Can. J. Chem. 33, 1614 (1955) · doi:10.1139/v55-195
[4] L.A. Segel, Bull. Math. Biol. 50, 579 (1988)
[5] L.A. Segel, M. Slemrod, SIAM Rev. 31, 446 (1989) · Zbl 0679.34066 · doi:10.1137/1031091
[6] S. Schnell, P.K. Maini, Bull. Math. Biol. 62, 483 (2000) · Zbl 1323.92099 · doi:10.1006/bulm.1999.0163
[7] J.D. Murray, Mathematical Biology I: An Introduction, 3rd edn. (Springer, New York, 2002) · Zbl 1006.92001
[8] J. Keener, J. Sneyd, Mathematical Physiology I: Cellular Physiology, 2nd edn. (Springer, New York, 2009) · Zbl 1273.92017
[9] J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[10] M. Uma Maheswari, L. Rajendran, J. Math. Chem. 49, 1713 (2011) · Zbl 1303.92154 · doi:10.1007/s10910-011-9853-0
[11] G. Varadharajan, L. Rajendran, Nat. Sci. 3, 459 (2011)
[12] S. Khoshnaw, arXiv:1208.0747v1[q-bio.QM] (2012)
[13] G. Varadharajan, L. Rajendran, Appl. Math. 2, 1140 (2011) · doi:10.4236/am.2011.29158
[14] C.T. Pandi, L. Rajendran, Int. J. Math. Arch. 11, 2308 (2011)
[15] J.H. He, Int. J. Mod. Phys. B 20, 1141 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.