×

zbMATH — the first resource for mathematics

Strong cosmic censorship: taking the rough with the smooth. (English) Zbl 1402.83055
Summary: It has been argued that the strong cosmic censorship conjecture is violated by Reissner-Nordström-de Sitter black holes: for near-extremal black holes, generic scalar field perturbations arising from smooth initial data have finite energy at the Cauchy horizon even though they are not continuously differentiable there. In this paper, we consider the analogous problem for coupled gravitational and electromagnetic perturbations. We find that such perturbations exhibit a much worse violation of strong cosmic censorship: for a sufficiently large near-extremal black hole, perturbations arising from smooth initial data can be extended through the Cauchy horizon in an arbitrarily smooth way. This is in apparent contradiction with an old argument in favour of strong cosmic censorship. We resolve this contradiction by showing that this old argument is valid only for initial data that is not smooth. This is in agreement with the recent proposal that, to recover strong cosmic censorship, one must allow rough initial data.

MSC:
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53Z05 Applications of differential geometry to physics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] R. Penrose, Singularities of spacetime, in Theoretical principles in astrophysics and relativity W.R.N.R. Liebowitz and P.O.Vandervoort eds., Chicago University Press (1978), pp. 217-243.
[2] Simpson, M.; Penrose, R., Internal instability in a Reissner-Nordstrom black hole, Int. J. Theor. Phys., 7, 183, (1973)
[3] J. McNamara, Instability of black hole inner horizons, Proc. Roy. Soc. Lond.A 358 (1978) 499.
[4] Chandrasekhar, S.; Hartle, JB, On crossing the cauchy horizon of a Reissner-Nordström black-hole, Proc. Roy. Soc. Lond., A 384, 301, (1982) · Zbl 0942.83507
[5] E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev.D 41 (1990) 1796 [INSPIRE].
[6] Dafermos, M., Black holes without spacelike singularities, Commun. Math. Phys., 332, 729, (2014) · Zbl 1301.83021
[7] J. McNamara, Behaviour of scalar perturbations of a Reissner-Nordström black hole inside the event horizon, Proc. Roy. Soc. Lond.A 364 (1978) 121.
[8] Ori, A., Inner structure of a charged black hole: An exact mass-inflation solution, Phys. Rev. Lett., 67, 789, (1991) · Zbl 0990.83529
[9] M. Dafermos, The Interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math.58 (2005) 0445 [gr-qc/0307013] [INSPIRE]. · Zbl 1071.83037
[10] Franzen, AT, Boundedness of Massless Scalar Waves on Reissner-Nordström Interior Backgrounds, Commun. Math. Phys., 343, 601, (2016) · Zbl 1342.35386
[11] M. Dafermos and J. Luk, The interior of dynamical vacuum black holes I: The C0-stability of the Kerr Cauchy horizon, arXiv:1710.01722 [INSPIRE].
[12] J. Luk and S.-J. Oh, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region, arXiv:1702.05715 [INSPIRE].
[13] D. Christodoulou, The Formation of Black Holes in General Relativity, European Mathematical Society (2009). · Zbl 1197.83004
[14] J. Luk and S.-J. Oh, Proof of linear instability of the Reissner-Nordström Cauchy horizon under scalar perturbations, Duke Math. J.166 (2017) 437 [arXiv:1501.04598] [INSPIRE].
[15] M. Dafermos and Y. Shlapentokh-Rothman, Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes, Commun. Math. Phys.350 (2017) 985 [arXiv:1512.08260] [INSPIRE]. · Zbl 1360.83030
[16] F. Mellor and I. Moss, Stability of Black Holes in de Sitter Space, Phys. Rev.D 41 (1990) 403 [INSPIRE].
[17] C.M. Chambers and I.G. Moss, Stability of the Cauchy horizon in Kerr-de Sitter space-times, Class. Quant. Grav.11 (1994) 1035 [gr-qc/9404015] [INSPIRE].
[18] P.R. Brady, I.G. Moss and R.C. Myers, Cosmic censorship: As strong as ever, Phys. Rev. Lett.80 (1998) 3432 [gr-qc/9801032] [INSPIRE]. · Zbl 0949.83051
[19] V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett.120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].
[20] P. Hintz and A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes, arXiv:1606.04014 [INSPIRE]. · Zbl 1391.83061
[21] P. Hintz, Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, arXiv:1612.04489 [INSPIRE]. · Zbl 1396.83018
[22] Costa, JL; Girão, PM; Natário, J.; Silva, JD, On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law, Commun. Math. Phys., 361, 289, (2018) · Zbl 1398.83019
[23] O.J.C. Dias, F.C. Eperon, H.S. Reall and J.E. Santos, Strong cosmic censorship in de Sitter space, Phys. Rev.D 97 (2018) 104060 [arXiv:1801.09694] [INSPIRE].
[24] S. Hod, Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes, Phys. Lett.B 780 (2018) 221 [arXiv:1803.05443] [INSPIRE].
[25] M. Dafermos and Y. Shlapentokh-Rothman, Rough initial data and the strength of the blue-shift instability on cosmological black holes with Λ \(>\) 0, Class. Quant. Grav.35 (2018) 195010 [arXiv:1805.08764] [INSPIRE].
[26] Kodama, H.; Ishibashi, A., Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys., 111, 29, (2004) · Zbl 1073.83029
[27] Mellor, F.; Moss, I., A reassessment of the stability of the cauchy horizon in de sitter space, Class. Quant. Grav., 9, l43, (1992)
[28] Brady, PR; Poisson, E., Cauchy horizon instability for Reissner-Nordstrom black holes in de sitter space, Class. Quant. Grav., 9, 121, (1992)
[29] C. Kehle and Y. Shlapentokh-Rothman, A scattering theory for linear waves on the interior of Reissner-Nordström black holes, arXiv:1804.05438 [INSPIRE].
[30] P. Hintz and A. Vasy, Analysis of linear waves near the Cauchy horizon of cosmological black holes, J. Math. Phys.58 (2017) 081509 [arXiv:1512.08004] [INSPIRE]. · Zbl 1370.83119
[31] O.J.C. Dias, J.E. Santos and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav.33 (2016) 133001 [arXiv:1510.02804] [INSPIRE]. · Zbl 1346.83002
[32] Dias, OJC; Figueras, P.; Monteiro, R.; Reall, HS; Santos, JE, An instability of higher-dimensional rotating black holes, JHEP, 05, 076, (2010) · Zbl 1287.83031
[33] Cardoso, V.; Dias, OJC; Hartnett, GS; Lehner, L.; Santos, JE, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS, JHEP, 04, 183, (2014) · Zbl 1333.83063
[34] S. Chandrasekhar, The mathematical theory of black holes, Oxford classic texts in the physical sciences, Oxford University Press, Oxford (2002).
[35] O.J.C. Dias and J.E. Santos, Boundary Conditions for Kerr-AdS Perturbations, JHEP10 (2013) 156 [arXiv:1302.1580] [INSPIRE]. · Zbl 1342.83148
[36] Goebel, CJ, Comments on the “vibrations” of a Black Hole, Astrophys. J., 172, l95, (1972)
[37] V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole, Phys. Rev.D 30 (1984) 295 [INSPIRE].
[38] Ferrari, V.; Mashhoon, B., Oscillations of a Black Hole, Phys. Rev. Lett., 52, 1361, (1984)
[39] B. Mashhoon, Stability of charged rotating black holes in the eikonal approximation, Phys. Rev.D 31 (1985) 290 [INSPIRE].
[40] Bombelli, L.; Calzetta, E., Chaos around a black hole, Class. Quant. Grav., 9, 2573, (1992)
[41] N.J. Cornish and J.J. Levin, Lyapunov timescales and black hole binaries, Class. Quant. Grav.20 (2003) 1649 [gr-qc/0304056] [INSPIRE]. · Zbl 1040.83021
[42] V. Cardoso, A.S. Miranda, E. Berti, H. Witek and V.T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev.D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].
[43] S.R. Dolan, The Quasinormal Mode Spectrum of a Kerr Black Hole in the Eikonal Limit, Phys. Rev.D 82 (2010) 104003 [arXiv:1007.5097] [INSPIRE].
[44] H. Yang, D.A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang and Y. Chen, Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation, Phys. Rev.D 86 (2012) 104006 [arXiv:1207.4253] [INSPIRE].
[45] S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III — Interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J.193 (1974) 443 [INSPIRE].
[46] H. Yang, A. Zimmerman, A. Zenginoğlu, F. Zhang, E. Berti and Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown, Phys. Rev.D 88 (2013) 044047 [arXiv:1307.8086] [INSPIRE].
[47] A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly extremal black holes, Phys. Rev.D 93 (2016) 044033 [Erratum ibid.D 93 (2016) 089905] [arXiv:1512.02247] [INSPIRE].
[48] F. Mellor and I. Moss, Black Holes and Quantum Wormholes, Phys. Lett.B 222 (1989) 361 [INSPIRE]. · Zbl 0673.53049
[49] L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys.B 383 (1992) 395 [hep-th/9203018] [INSPIRE].
[50] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[51] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].
[52] Birrell, ND; Davies, PCW, On falling through a black hole into another universe, Nature, 272, 35, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.