zbMATH — the first resource for mathematics

Effective action for relativistic hydrodynamics: fluctuations, dissipation, and entropy inflow. (English) Zbl 1402.83021
Summary: We present a detailed and self-contained analysis of the universal Schwinger-Keldysh effective field theory which describes macroscopic thermal fluctuations of a relativistic field theory, elaborating on our earlier construction [ibid. 2016, No. 4, Paper No. 39, 21 p. (2016; Zbl 1388.83351)]. We write an effective action for appropriate hydrodynamic Goldstone modes and fluctuation fields, and discuss the symmetries to be imposed. The constraints imposed by fluctuation-dissipation theorem are manifest in our formalism. Consequently, the action reproduces hydrodynamic constitutive relations consistent with the local second law at all orders in the derivative expansion, and captures the essential elements of the eightfold classification of hydrodynamic transport of [the authors, ibid. 2015, No. 5, Paper No. 60, 214 p. (2015; Zbl 1388.81456)]. We demonstrate how to recover the hydrodynamic entropy and give predictions for the non-Gaussian hydrodynamic fluctuations. The basic ingredients of our construction involve (i) doubling of degrees of freedom a la Schwinger-Keldysh, (ii) an emergent gauge \(U(1)_{T}\) symmetry associated with entropy which is encapsulated in a Noether current a la Wald, and (iii) a BRST/topological supersymmetry imposing the fluctuation-dissipation theorem a la G. Parisi and N. Sourlas [Nucl. Phys., B 206, No. 2, 321–332 (1982; Zbl 0968.81547)]. The overarching mathematical framework for our construction is provided by the balanced equivariant cohomology of thermal translations, which captures the basic constraints arising from the Schwinger-Keldysh doubling, and the thermal Kubo-Martin-Schwinger relations. All these features are conveniently implemented in a covariant superspace formalism. An added benefit is that the second law can be understood as being due to entropy inflow from the Grassmann-odd directions of superspace.

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
81T45 Topological field theories in quantum mechanics
82B05 Classical equilibrium statistical mechanics (general)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI arXiv
[1] Haehl, FM; Loganayagam, R.; Rangamani, M., Topological σ-models & dissipative hydrodynamics, JHEP, 04, 039, (2016) · Zbl 1388.83351
[2] Haehl, FM; Loganayagam, R.; Rangamani, M., Adiabatic hydrodynamics: The eightfold way to dissipation, JHEP, 05, 060, (2015) · Zbl 1388.81456
[3] Haehl, FM; Loganayagam, R.; Rangamani, M., The Fluid Manifesto: Emergent symmetries, hydrodynamics and black holes, JHEP, 01, 184, (2016) · Zbl 1388.83350
[4] M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP09 (2017) 095 [arXiv:1511.03646] [INSPIRE]. · Zbl 1382.81199
[5] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, JHEP06 (2017) 069 [arXiv:1610.01940] [INSPIRE]. · Zbl 1380.81369
[6] F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology, JHEP06 (2017) 070 [arXiv:1610.01941] [INSPIRE]. · Zbl 1380.81370
[7] P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
[8] Jensen, K.; Pinzani-Fokeeva, N.; Yarom, A., Dissipative hydrodynamics in superspace, JHEP, 09, 127, (2018) · Zbl 1398.81146
[9] Gao, P.; Liu, H., Emergent Supersymmetry in Local Equilibrium Systems, JHEP, 01, 040, (2018) · Zbl 1384.81134
[10] Glorioso, P.; Crossley, M.; Liu, H., Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP, 09, 096, (2017) · Zbl 1382.81205
[11] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123, (2014)
[12] Martin, PC; Siggia, ED; Rose, HA, Statistical Dynamics of Classical Systems, Phys. Rev., A 8, 423, (1973)
[13] Haehl, FM; Loganayagam, R.; Rangamani, M., Inflow Mechanism for Hydrodynamic Entropy, Phys. Rev. Lett., 121, (2018)
[14] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear Fluid Dynamics from Gravity, JHEP, 02, 045, (2008)
[15] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Black holes in higher dimensions, pp. 348-383 (2012) [arXiv:1107.5780] [INSPIRE]. · Zbl 1263.83009
[16] Schwinger, JS, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407, (1961) · Zbl 0098.43503
[17] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [INSPIRE].
[18] Chou, K-c; Su, Z-b; Hao, B-l; Yu, L., Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rept., 118, 1, (1985)
[19] Weldon, HA, Two sum rules for the thermal n-point functions, Phys. Rev., D 72, 117901, (2005)
[20] Geracie, M.; Haehl, FM; Loganayagam, R.; Narayan, P.; Ramirez, DM; Rangamani, M., Schwinger-Keldysh superspace in quantum mechanics, Phys. Rev., D 97, 105023, (2018)
[21] R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE].
[22] P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1., Phys. Rev.115 (1959) 1342 [INSPIRE].
[23] Haehl, FM; Loganayagam, R.; Rangamani, M., The eightfold way to dissipation, Phys. Rev. Lett., 114, 201601, (2015) · Zbl 1388.81456
[24] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[25] Witten, E., Supersymmetry and Morse theory, J. Diff. Geom., 17, 661, (1982) · Zbl 0499.53056
[26] A.H. Taub, General Relativistic Variational Principle for Perfect Fluids, Phys. Rev.94 (1954) 1468 [INSPIRE].
[27] Carter, B., Elastic Perturbation Theory in General Relativity and a Variation Principle for a Rotating Solid Star, Commun. Math. Phys., 30, 261, (1973) · Zbl 0269.73011
[28] Carter, B., Covariant Theory of Conductivity in Ideal Fluid or Solid Media, Lect. Notes Math., 1385, 1, (1989) · Zbl 0694.76052
[29] Nickel, D.; Son, DT, Deconstructing holographic liquids, New J. Phys., 13, (2011)
[30] Dubovsky, S.; Hui, L.; Nicolis, A.; Son, DT, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev., D 85, (2012)
[31] Dubovsky, S.; Hui, L.; Nicolis, A., Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev., D 89, (2014)
[32] Bhattacharya, J.; Bhattacharyya, S.; Rangamani, M., Non-dissipative hydrodynamics: Effective actions versus entropy current, JHEP, 02, 153, (2013) · Zbl 1342.76006
[33] Saremi, O.; Son, DT, Hall viscosity from gauge/gravity duality, JHEP, 04, 091, (2012) · Zbl 1348.81325
[34] F.M. Haehl and M. Rangamani, Comments on Hall transport from effective actions, JHEP10 (2013) 074 [arXiv:1305.6968] [INSPIRE].
[35] Geracie, M.; Son, DT, Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term, JHEP, 11, 004, (2014)
[36] Haehl, FM; Loganayagam, R.; Rangamani, M., Effective actions for anomalous hydrodynamics, JHEP, 03, 034, (2014)
[37] Romatschke, P., Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy, Class. Quant. Grav., 27, (2010) · Zbl 1184.83026
[38] Bhattacharyya, S., Constraints on the second order transport coefficients of an uncharged fluid, JHEP, 07, 104, (2012)
[39] Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Jain, S.; Minwalla, S.; Sharma, T., Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP, 09, 046, (2012) · Zbl 1397.82026
[40] Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A., Towards hydrodynamics without an entropy current, Phys. Rev. Lett., 109, 101601, (2012)
[41] Jensen, K.; Loganayagam, R.; Yarom, A., Thermodynamics, gravitational anomalies and cones, JHEP, 02, 088, (2013) · Zbl 1342.83245
[42] Jensen, K.; Loganayagam, R.; Yarom, A., Anomaly inflow and thermal equilibrium, JHEP, 05, 134, (2014)
[43] Jensen, K.; Loganayagam, R.; Yarom, A., Chern-Simons terms from thermal circles and anomalies, JHEP, 05, 110, (2014)
[44] Bhattacharyya, S., Entropy current and equilibrium partition function in fluid dynamics, JHEP, 08, 165, (2014) · Zbl 1333.81066
[45] Bhattacharyya, S., Entropy Current from Partition Function: One Example, JHEP, 07, 139, (2014)
[46] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev., D 91, 105031, (2015)
[47] Endlich, S.; Nicolis, A.; Porto, RA; Wang, J., Dissipation in the effective field theory for hydrodynamics: First order effects, Phys. Rev., D 88, 105001, (2013)
[48] Hayata, T.; Hidaka, Y.; Noumi, T.; Hongo, M., Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method, Phys. Rev., D 92, (2015)
[49] Floerchinger, S., Variational principle for theories with dissipation from analytic continuation, JHEP, 09, 099, (2016) · Zbl 1390.81382
[50] F.M. Haehl, R. Loganayagam and M. Rangamani, Two roads to hydrodynamic effective actions: a comparison, arXiv:1701.07896 [INSPIRE]. · Zbl 1388.81456
[51] Hongo, M., Path-integral formula for local thermal equilibrium, Annals Phys., 383, 1, (2017) · Zbl 1373.81298
[52] M. Hongo, Nonrelativistic hydrodynamics from quantum field theory: (I) Normal fluid composed of spinless Schrödinger fields, arXiv:1801.06520 [INSPIRE].
[53] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, An entropy current in superspace, arXiv:1803.07070 [INSPIRE]. · Zbl 1398.81146
[54] Mallick, K.; Moshe, M.; Orland, H., A Field-theoretic approach to nonequilibrium work identities, J. Phys., A 44, (2011) · Zbl 1211.82044
[55] Haag, R.; Hugenholtz, NM; Winnink, M., On the Equilibrium states in quantum statistical mechanics, Commun. Math. Phys., 5, 215, (1967) · Zbl 0171.47102
[56] Haehl, FM; Loganayagam, R.; Narayan, P.; Nizami, AA; Rangamani, M., Thermal out-of-time-order correlators, KMS relations and spectral functions, JHEP, 12, 154, (2017) · Zbl 1383.81223
[57] Sieberer, LM; Chiocchetta, A.; Gambassi, A.; Täuber, UC; Diehl, S., Thermodynamic Equilibrium as a Symmetry of the Schwinger-Keldysh Action, Phys. Rev., B 92, 134307, (2015)
[58] Feynman, RP; Vernon, FL, The Theory of a general quantum system interacting with a linear dissipative system, Annals Phys., 24, 118, (1963)
[59] Caldeira, AO; Leggett, AJ, Path integral approach to quantum Brownian motion, Physica, A 121, 587, (1983) · Zbl 0585.60082
[60] G. ’t Hooft and M.J.G. Veltman, Diagrammar, NATO Sci. Ser.B 4 (1974) 177 [INSPIRE].
[61] B.S. DeWitt, Supermanifolds, CambridgE Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2012).
[62] Parisi, G.; Sourlas, N., Supersymmetric Field Theories and Stochastic Differential Equations, Nucl. Phys., B 206, 321, (1982) · Zbl 0968.81547
[63] Gaspard, P., Fluctuation relations for equilibrium states with broken discrete symmetries, J. Stat. Mech., 8, (2012)
[64] Gaspard, P., Time-reversal Symmetry Relations for Fluctuating Currents in Nonequilibrium Systems, Acta Phys. Pol., B 44, 815, (2013) · Zbl 1371.82087
[65] C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett.78 (1997) 2690 [cond-mat/9610209] [INSPIRE].
[66] Crooks, GE, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev., E 60, 2721, (1999)
[67] Cordes, S.; Moore, GW; Ramgoolam, S., Large N 2-D Yang-Mills theory and topological string theory, Commun. Math. Phys., 185, 543, (1997) · Zbl 0944.32013
[68] Blau, M.; Thompson, G., N = 2 topological gauge theory, the Euler characteristic of moduli spaces and the Casson invariant, Commun. Math. Phys., 152, 41, (1993) · Zbl 0769.53017
[69] R. Dijkgraaf and G.W. Moore, Balanced topological field theories, Commun. Math. Phys.185 (1997) 411 [hep-th/9608169] [INSPIRE]. · Zbl 0888.58008
[70] Blau, M.; Thompson, G., Aspects of N_{T} ≥ 2 topological gauge theories and D-branes, Nucl. Phys., B 492, 545, (1997) · Zbl 0996.58504
[71] Vafa, C.; Witten, E., A Strong coupling test of S duality, Nucl. Phys., B 431, 3, (1994) · Zbl 0964.81522
[72] Zinn-Justin, J., Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys., 113, 1, (2002)
[73] C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett.78 (1997) 2690 [cond-mat/9610209] [INSPIRE].
[74] Bhattacharyya, S.; etal., Local Fluid Dynamical Entropy from Gravity, JHEP, 06, 055, (2008)
[75] Callan, CG; Harvey, JA, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys., B 250, 427, (1985)
[76] Basart, H.; Flato, M.; Lichnerowicz, A.; Sternheimer, D., Deformation theory applied to quantization and statistical mechanics, Lett. Math. Phys., 8, 483, (1984) · Zbl 0567.58011
[77] M. Bordemann, H. Romer and S. Waldmann, A Remark on formal KMS states in deformation quantization, Lett. Math. Phys.45 (1998) 49 [math/9801139] [INSPIRE]. · Zbl 0951.53057
[78] Bordemann, M.; Römer, H.; Waldmann, S., KMS states and star product quantization, Rept. Math. Phys., 44, 45, (1999) · Zbl 0964.81045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.