×

Generation of phase-squeezed optical pulses with large coherent amplitudes by post-selection of single photon and weak cross-Kerr non-linearity. (English) Zbl 1402.81275

Summary: Phase-squeezed light can enhance the precision of optical phase estimation. The larger the photon numbers are and the stronger the squeezing is, the better the precision will be. We propose an experimental scheme for generating phase-squeezed light pulses with large coherent amplitudes. In our scheme, one arm of a single-photon Mach-Zehnder interferometer interacts with coherent light via a non-linear optical Kerr medium to generate a coherent superposition state. Post-selecting the single photon by properly tuning a variable beam splitter in the interferometer yields a phase-squeezed output.

MSC:

81V80 Quantum optics
81R30 Coherent states
81P15 Quantum measurement theory, state operations, state preparations
78A60 Lasers, masers, optical bistability, nonlinear optics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Giovannetti, V; Lloyd, S; Maccone, L, Advances in quantum metrology, Nat. Photon., 5, 222-229, (2011) · doi:10.1038/nphoton.2011.35
[2] The LIGO Scientific Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys., 7, 962-965, (2011) · doi:10.1038/nphys2083
[3] Aasi, J; etal., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nat. Photon., 7, 613-619, (2013) · doi:10.1038/nphoton.2013.177
[4] Dooley, KL; Schreiber, E; Vahlbruch, H; Affeldt, C; Leong, JR; Wittel, H; Grote, H, Phase control of squeezed vacuum states of light in gravitational wave detectors, Opt. Exp., 23, 8235-8245, (2015) · doi:10.1364/OE.23.008235
[5] Bachor, H.-A., Ralph, T.C.: A Guide to Experiments in Quantum Optics, 2nd, Revised and Enlarged Edition. Wiley-VCH, Germany (2004) · doi:10.1002/9783527619238
[6] Slavik, R; Parmigiani, F; Kakande, J; Lundström, C; Sjödin, M; Andrekson, PA; Weerasuriya, R; Sygletos, S; Ellis, AD; Grüner-Nielsen, L; Jakobsen, D; Herstrøm, S; Phelan, R; O’Gorman, J; Bogris, A; Syvridis, D; Dasgupta, S; Petropoulos, P; Richardson, DJ, All-optical phase and amplitude regenerator for next-generation telecommunications systems, Nat. Photon., 4, 690-695, (2010) · doi:10.1038/nphoton.2010.203
[7] Chen, J; Habif, JL; Dutton, Z; Lazarus, R; Guha, S, Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver, Nat. Photon., 6, 374-379, (2012) · doi:10.1038/nphoton.2012.113
[8] Loock, P; Ladd, TD; Sanaka, K; Yamaguchi, F; Nemoto, K; Munro, WJ; Yamamoto, Y, Hybrid quantum repeater using bright coherent light, Phys. Rev. Lett., 96, 240501, (2006) · doi:10.1103/PhysRevLett.96.240501
[9] Loock, P; Lütkenhaus, N; Munro, WJ; Nemoto, K, Quantum repeaters using coherent-state communication, Phys. Rev. A, 78, 062319, (2008) · doi:10.1103/PhysRevA.78.062319
[10] Nemoto, K; Munro, WJ, Nearly deterministic linear optical controlled-NOT gate, Phys. Rev. Lett., 93, 250502, (2004) · doi:10.1103/PhysRevLett.93.250502
[11] Munro, WJ; Nemoto, K; Spiller, TP, Weak nonlinearities: a new route to optical quantum computation, New J. Phys., 7, 137, (2005) · doi:10.1088/1367-2630/7/1/137
[12] Kok, P; Munro, WJ; Nemoto, K; Ralph, TC; Dowling, JP; Milburn, GJ, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 79, 135, (2007) · doi:10.1103/RevModPhys.79.135
[13] Spiller, TP; Nemoto, K; Braunstein, SL; Munro, WJ; Loock, P; Milburn, GJ, Quantum computation by communication, New J. Phys., 8, 30, (2006) · doi:10.1088/1367-2630/8/2/030
[14] Braginsky, V.B., Khalili, F.Y., Thorne, K.S.: Quantum Measurement. Cambridge University Press, Cambridge (1992) · Zbl 0828.46064 · doi:10.1017/CBO9780511622748
[15] Afek, I; Ambar, O; Silberberg, Y, High-NOON states by mixing quantum and classical light, Science, 328, 879-881, (2010) · Zbl 1226.81028 · doi:10.1126/science.1188172
[16] Israel, Y; Afek, I; Rosen, S; Ambar, O; Silberberg, Y, Experimental tomography of NOON states with large photon numbers, Phys. Rev. A, 85, 022115, (2012) · doi:10.1103/PhysRevA.85.022115
[17] Resch, KJ; Pregnell, KL; Prevedel, R; Gilchrist, A; Pryde, GJ; O’Brien, JL; White, AG, Time-reversal and super-resolving phase measurements, Phys. Rev. Lett., 98, 223601, (2007) · doi:10.1103/PhysRevLett.98.223601
[18] Xiang, GY; Higgins, BL; Berry, DW; Wiseman, HM; Pryde, GJ, Entanglement-enhanced measurement of a completely unknown optical phase, Nat. Photon., 5, 43-47, (2011) · doi:10.1038/nphoton.2010.268
[19] Ono, T; Hofmann, HF, Quantum enhancement of N-photon phase sensitivity by interferometric addition of down-converted photon pairs to weak coherent light, J. Phys. B: At. Mol. Opt. Phys., 41, 095502, (2008) · doi:10.1088/0953-4075/41/9/095502
[20] Dorner, U; Demkowicz-Dobrzanski, R; Smith, BJ; Lundeen, JS; Wasilewski, W; Banaszek, K; Walmsley, IA, Optimal quantum phase estimation, Phys. Rev. Lett., 102, 040403, (2009) · doi:10.1103/PhysRevLett.102.040403
[21] Lvovsky, AI; Andrews, D (ed.), Squeezed light, 121-164, (2015), New Jersey
[22] Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)
[23] D’Angelo, M; Chekhova, MV; Shih, Y, Two-photon diffraction and quantum lithography, Phys. Rev. Lett., 87, 013602, (2001) · doi:10.1103/PhysRevLett.87.013602
[24] Mitchell, MW; Lundeen, JS; Steinberg, AM, Super-resolving phase measurements with a multiphoton entangled state, Nature, 429, 161-164, (2004) · doi:10.1038/nature02493
[25] Kim, H; Park, HS; Choi, S-K, Three-photon N00N states generated by photon subtraction from double photon pairs, Opt. Express, 17, 19720-19726, (2009) · doi:10.1364/OE.17.019720
[26] Yonezawa, H; Nakane, D; Wheatley, TA; Iwasawa, K; Takeda, S; Arao, H; Ohki, K; Tsumura, K; Berry, DW; Ralph, TC; Wiseman, HM; Huntington, EH; Furusawa, A, Quantum-enhanced optical-phase tracking, Science, 337, 1514-1517, (2012) · Zbl 1355.81071 · doi:10.1126/science.1225258
[27] Praxmeyer, L; Loock, P, Near-unit-fidelity entanglement distribution scheme using Gaussian communication, Phys. Rev. A, 81, 060303(r), (2010) · doi:10.1103/PhysRevA.81.060303
[28] Matsuoka, F; Tomita, A; Okamoto, A, Entanglement generation by communication using squeezed states, Phys. Rev. A, 88, 022313, (2013) · doi:10.1103/PhysRevA.88.022313
[29] Ralph, TC; Bachor, HA, Noiseless amplification of the coherent amplitude of bright squeezed light using a standard laser amplifier, Opt. Commun., 119, 301-304, (1995) · doi:10.1016/0030-4018(95)00336-7
[30] Levien, RB; Collett, MJ; Walls, DF, Phase squeezing using intracavity subharmonic generation, Opt. Commun., 82, 171-182, (1991) · doi:10.1016/0030-4018(91)90209-V
[31] Yuen, HP, Two-photon coherent states of the radiation field, Phys. Rev. A, 13, 2226, (1976) · doi:10.1103/PhysRevA.13.2226
[32] Paris, MGA, Displacement operator by beam splitter, Phys. Lett. A, 217, 78-80, (1996) · doi:10.1016/0375-9601(96)00339-8
[33] Eberle, T; Steinlechner, S; Bauchrowitz, J; Händchen, V; Vahlbruch, H; Mehmet, M; Müller-Ebhardt, H; Schnabel, R, Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection, Phys. Rev. Lett., 104, 251102, (2010) · doi:10.1103/PhysRevLett.104.251102
[34] Breitenbach, G; Schiller, S; Mlynek, J, Measurement of the quantum states of squeezed light, Nature, 387, 471-475, (1997) · Zbl 1219.81090 · doi:10.1038/387471a0
[35] Xie, D; Pysher, M; Jing, J; Pfister, O, Enhanced optical communication and broadband sub-shot-noise interferometry with a stable free-running periodically poled ktiopo\(_{4}\) squeezer, J. Opt. Soc. Am. B, 24, 2702-2706, (2007) · doi:10.1364/JOSAB.24.002702
[36] Feizpour, A; Xing, X; Steinberg, AM, Amplifying single-photon nonlinearity using weak measurements, Phys. Rev. Lett., 107, 133603, (2011) · doi:10.1103/PhysRevLett.107.133603
[37] Aharonov, Y; Albert, DZ; Vaidman, L, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 60, 1351, (1988) · doi:10.1103/PhysRevLett.60.1351
[38] Matsuda, N; Shimizu, R; Mitsumori, Y; Kosaka, H; Edamatsu, K, Observation of optical-fibre Kerr nonlinearity at the single-photon level, Nat. Photon., 3, 95-98, (2009) · Zbl 1191.81228 · doi:10.1038/nphoton.2008.292
[39] Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, New York (1997) · Zbl 1027.81044
[40] Korde, R; Geist, J, Quantum efficiency stability of silicon photodiodes, Appl. Opt., 26, 5284-5290, (1987) · doi:10.1364/AO.26.005284
[41] Takeno, Y; Yukawa, M; Yonezawa, H; Furusawa, A, Observation of -9 db quadrature squeezing with improvement of phase stability in homodyne measurement, Opt. Express, 15, 4321-4327, (2007) · doi:10.1364/OE.15.004321
[42] Dmochowski, G; Feizpour, A; Hallaji, M; Zhuang, C; Hayat, A; Steinberg, AM, Experimental demonstration of the effectiveness of electromagnetically induced transparency for enhancing cross-phase modulation in the short-pulse regime, Phys. Rev. Lett., 116, 173002, (2016) · doi:10.1103/PhysRevLett.116.173002
[43] Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997) · Zbl 0948.81676
[44] Imoto, N; Haus, HA; Yamamoto, Y, Quantum nondemolition measurement of the photon number via the optical Kerr effect, Phys. Rev. A, 32, 2287, (1985) · doi:10.1103/PhysRevA.32.2287
[45] Yamamoto, Y., Imamoglu, A.: Mesoscopic Quantum Optics. Wiley, New York (1999) · Zbl 0998.81502
[46] Kitagawa, M; Yamamoto, Y, Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer, Phys. Rev. A, 34, 3974, (1986) · doi:10.1103/PhysRevA.34.3974
[47] Feizpour, A; Hallaji, M; Dmochowski, G; Steinberg, AM, Observation of the nonlinear phase shift due to single post-selected photons, Nat. Phys., 11, 905-909, (2015) · doi:10.1038/nphys3433
[48] Susa, Y; Shikano, Y; Hosoya, A, Optimal probe wave function of weak-value amplification, Phys. Rev. A, 85, 052110, (2012) · doi:10.1103/PhysRevA.85.052110
[49] Shikano, Y, On signal amplification via weak measurement, AIP Conf. Proc., 1633, 84-86, (2014) · Zbl 1299.81001 · doi:10.1063/1.4903102
[50] Pang, S; Brun, TA, Improving the precision of weak measurements by postselection measurement, Phys. Rev. Lett., 115, 120401, (2015) · doi:10.1103/PhysRevLett.115.120401
[51] Turek, Y; Maimaiti, W; Shikano, Y; Sun, CP; Al-Amri, M, Advantages of nonclassical pointer states in postselected weak measurements, Phys. Rev. A, 92, 022109, (2015) · doi:10.1103/PhysRevA.92.022109
[52] Tamate, S; Kobayashi, H; Nakanishi, T; Sugiyama, K; Kitano, M, Geometrical aspects of weak measurements and quantum erasers, New J. Phys., 11, 093025, (2009) · Zbl 1291.81033 · doi:10.1088/1367-2630/11/9/093025
[53] Dressel, J, Weak values as interference phenomena, Phys. Rev. A, 91, 032116, (2015) · doi:10.1103/PhysRevA.91.032116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.